Quantization of geometrical structures in locally covariant field theory

Katarzyna Rejzner1

University of Rome “Tor Vergata”
INdAM

1based on the joint work with Romeo Brunetti and Klaus Fredenhagen
Outline of the talk

1. Introduction
 - Effective quantum gravity
 - Local covariance

2. BV formalism for gravity
 - Kinematical structure
 - Dynamics and symmetries
 - BV complex

3. Quantization
 - Deformation quantization
 - Applications
Problems with quantum gravity

- Spacetime is dynamical.
Problems with quantum gravity

- Spacetime is dynamical.
- "Points" lose their meaning.
Problems with quantum gravity

- Spacetime is dynamical.
- "Points" loose their meaning.
- It is not clear what should be an observable.
Problems with quantum gravity

- Spacetime is dynamical.
- "Points" lose their meaning.
- It is not clear what should be an observable.
- Need for "background independance".
Problems with quantum gravity

- Spacetime is dynamical.
- "Points" lose their meaning.
- It is not clear what should be an observable.
- Need for "background independance".
- What replaces the classical spacetime structure in Planck scale?
Objectives of our program

Apply the methods of locally covariant quantum field theory to understand some of the features of quantum gravity.

Formulate perturbative quantum gravity as an effective theory that is valid in a given physical situation.

Answer some interpretational questions.

Find a relation to experiment: QG corrections to some processes, black hole radiation, cosmology.

Understand the small scale structure of spacetime: relation to noncommutative geometry.
Objectives of our program

- Apply the methods of locally covariant quantum field theory to understand some of the features of quantum gravity.
Objectives of our program

- Apply the methods of locally covariant quantum field theory to understand some of the features of quantum gravity.
- Formulate perturbative quantum gravity as an effective theory that is valid in a given physical situation.
Objectives of our program

- Apply the methods of locally covariant quantum field theory to understand some of the features of quantum gravity.
- Formulate perturbative quantum gravity as an effective theory that is valid in a given physical situation.
- Answer some interpretational questions.
Objectives of our program

- Apply the methods of locally covariant quantum field theory to understand some of the features of quantum gravity.
- Formulate perturbative quantum gravity as an effective theory that is valid in a given physical situation.
- Answer some interpretational questions.
- Find a relation to experiment: QG corrections to some processes, black hole radiation, cosmology.
Objectives of our program

- Apply the methods of locally covariant quantum field theory to understand some of the features of quantum gravity.
- Formulate perturbative quantum gravity as an effective theory that is valid in a given physical situation.
- Answer some interpretational questions.
- Find a relation to experiment: QG corrections to some processes, black hole radiation, cosmology.
- Understand the small scale structure of spacetime: relation to noncommutative geometry.
Intuitive idea

In experiment geometric structure is probed by the local observations. We have the following data:
Intuitive idea

In experiment geometric structure is probed by the local observations. We have the following data:

- Compact causally convex region \mathcal{O} of spacetime where the measurement is performed,
In experiment geometric structure is probed by the local observations. We have the following data:
- Compact causally convex region \mathcal{O} of spacetime where the measurement is performed,
- An observable Φ, which we measure,
Intuitive idea

- In experiment geometric structure is probed by the local observations. We have the following data:
 - Compact causally convex region \mathcal{O} of spacetime where the measurement is performed,
 - An observable Φ, which we measure,
 - We don’t measure the scalar curvature at a point, but we have some smearing related to the experimental setting: $\Phi(f) = \int f(x)R(x)$, $\text{supp}(f) \subset \mathcal{O}$.

$\Phi(f)$

\mathcal{O}

M

f
Intuitive idea

- In experiment geometric structure is probed by the local observations. We have the following data:
 - Compact causally convex region \mathcal{O} of spacetime where the measurement is performed,
 - An observable Φ, which we measure,
 - We don’t measure the scalar curvature at a point, but we have some smearing related to the experimental setting: $\Phi(f) = \int f(x)R(x)$, $\text{supp}(f) \subset \mathcal{O}$.
 - We can think of the measured observable as a perturbation of the fixed background metric: a tentative split into: $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$.
In experiment geometric structure is probed by the local observations. We have the following data:

- Compact causally convex region \mathcal{O} of spacetime where the measurement is performed,
- An observable Φ, which we measure,
- We don’t measure the scalar curvature at a point, but we have some smearing related to the experimental setting: $\Phi(f) = \int f(x)R(x)$, $\text{supp}(f) \subset \mathcal{O}$.

We can think of the measured observable as a perturbation of the fixed background metric: a tentative split into: $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$.

Diffeomorphism transformation: move our experimental setup to a different region \mathcal{O}'.

$\Phi(\mathcal{O}, g)(f)[h]$
How to implement it?

To compare $\Phi(O, g)(f)$ and $\Phi(O', \alpha \ast g)(\alpha \ast f)$ we need to know what does it mean to have "the same observable in a different region".
How to implement it?

- To compare $\Phi(\mathcal{O}, g)(f)$ and $\Phi(\mathcal{O}', \alpha^* g)(\alpha^* f)$ we need to know what does it mean to have "the same observable in a different region".

- A good language to formalize it is the category theory. We need following categories:

 - Loc where the objects are all four-dimensional, globally hyperbolic oriented and time-oriented spacetimes $M = (M, g)$. Morphisms: isometric embeddings preserving orientation, time-orientation and the causal structure.
 - Vec with (small) topological vector spaces as objects and injective continuous homomorphisms of topological vector spaces as morphisms.

(Katarzyna Rejzner QG in LCFT 5 / 24)
How to implement it?

- To compare $\Phi(O, g)(f)$ and $\Phi(O', \alpha^* g)(\alpha^* f)$ we need to know what does it mean to have "the same observable in a different region".

- A good language to formalize it is the category theory. We need following categories:
 - **Loc** where the objects are all four-dimensional, globally hyperbolic oriented and time-oriented spacetimes $M = (M, g)$. **Morphisms**: isometric embeddings preserving orientation, time-orientation and the causal structure.
How to implement it?

To compare $\Phi(O, g)(f)$ and $\Phi(O', \alpha^* g)(\alpha^* f)$ we need to know what does it mean to have "the same observable in a different region".

A good language to formalize it is the category theory. We need following categories:

- **Loc** where the objects are all four-dimensional, globally hyperbolic oriented and time-oriented spacetimes $M = (M, g)$. Morphisms: isometric embeddings preserving orientation, time-orientation and the causal structure.

- **Vec** with (small) topological vector spaces as objects and injective continuous homomorphisms of topological vector spaces as morphisms.
Having the quantization in mind we formulate already the classical theory in the perturbative setting.
Having the quantization in mind we formulate already the classical theory in the perturbative setting.

We work off-shell, so for the effective theory of gravity the configuration space is $\mathcal{E}(\mathcal{M}) = \Gamma((T^*\mathcal{M})^2 \otimes)$. The space of compactly supported configurations is denoted by $\mathcal{E}_c(\mathcal{M})$.
Having the quantization in mind we formulate already the classical theory in the perturbative setting.

We work off-shell, so for the effective theory of gravity the configuration space is \(\mathcal{E}(\mathcal{M}) = \Gamma((T^*M)^{2\otimes}) \). The space of compactly supported configurations is denoted by \(\mathcal{E}_c(\mathcal{M}) \).

We define a contravariant functor \(\mathcal{E} : \text{Loc} \to \text{Vec} \), which assigns to a spacetime the corresponding configuration space and acts on morphisms \(\chi : \mathcal{M} \to \mathcal{N} \) as \(\mathcal{E}\chi = \chi^* : \mathcal{E}(\mathcal{N}) \to \mathcal{E}(\mathcal{M}) \).
Having the quantization in mind we formulate already the classical theory in the perturbative setting.

We work off-shell, so for the effective theory of gravity the configuration space is $\mathcal{E}(\mathcal{M}) = \Gamma((T^*\mathcal{M})^2 \otimes)$. The space of compactly supported configurations is denoted by $\mathcal{E}_c(\mathcal{M})$.

We define a contravariant functor $\mathcal{E} : \text{Loc} \rightarrow \text{Vec}$, which assigns to a spacetime the corresponding configuration space and acts on morphisms $\chi : \mathcal{M} \rightarrow \mathcal{N}$ as $\mathcal{E}\chi = \chi^* : \mathcal{E}(\mathcal{N}) \rightarrow \mathcal{E}(\mathcal{M})$.

In a similar way we define a covariant functor $\mathcal{E}_c : \text{Loc} \rightarrow \text{Vec}$ by setting $\mathcal{E}\chi = \chi_*$, where:

$$
\chi_* h = \begin{cases}
(\chi^{-1})^* h(x) , & x \in \chi(M), \\
0 , & \text{else}
\end{cases}
$$
We consider the space of smooth functionals on $\mathcal{E}(\mathcal{M})$, i.e. $C^\infty(\mathcal{E}(\mathcal{M}), \mathbb{R})$.
Functionals

- We consider the space of smooth functionals on $\mathcal{E}(\mathcal{M})$, i.e. $C^\infty(\mathcal{E}(\mathcal{M}), \mathbb{R})$.
- The support of $F \in C^\infty(\mathcal{E}(\mathcal{M}), \mathbb{R})$ is defined as:

$$\text{supp } F = \{ x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists h_1, h_2 \in \mathcal{E}(\mathcal{M}), \text{ supp } h_2 \subset U \text{ such that } F(h_1 + h_2) \neq F(h_1) \}.$$
Functionals

- We consider the space of smooth functionals on $\mathcal{E}(\mathcal{M})$, i.e. $C^\infty(\mathcal{E}(\mathcal{M}), \mathbb{R})$.
- The support of $F \in C^\infty(\mathcal{E}(\mathcal{M}), \mathbb{R})$ is defined as:

$$\text{supp } F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists h_1, h_2 \in \mathcal{E}(\mathcal{M}), \text{ supp } h_2 \subset U \text{ such that } F(h_1 + h_2) \neq F(h_1)\} .$$

- F is local if it is of the form: $F(h) = \int_M f(j_x(h))(x)$, where f is a density-valued function on the jet bundle over M and $j_x(h)$ is the jet of φ at the point x.

Katarzyna Rejzner QG in LCFT 7/24
Functionals

- We consider the space of smooth functionals on \(\mathcal{E}(\mathcal{M}) \), i.e. \(\mathcal{C}^\infty(\mathcal{E}(\mathcal{M}), \mathbb{R}) \).
- The support of \(F \in \mathcal{C}^\infty(\mathcal{E}(\mathcal{M}), \mathbb{R}) \) is defined as:
 \[
 \text{supp} F = \{ x \in M | \forall \text{ neighbourhoods } U \text{ of } x \ \exists h_1, h_2 \in \mathcal{E}(\mathcal{M}), \supp h_2 \subset U \text{ such that } F(h_1 + h_2) \neq F(h_1) \} .
 \]
- \(F \) is local if it is of the form: \(F(h) = \int_M f(j_x(h))(x) \), where \(f \) is a density-valued function on the jet bundle over \(M \) and \(j_x(h) \) is the jet of \(\varphi \) at the point \(x \).
- \(\mathcal{F}(\mathcal{M}) \doteq \text{the space of multilocal functionals (products of local)} \).
To discuss symmetries we need one more definition.
Vector fields

- To discuss symmetries we need one more definition.
- Vector fields $X \in \Gamma(T\mathcal{E}(\mathcal{M}))$ on $\mathcal{E}(\mathcal{M})$ (trivial infinite dimensional manifold) can be seen as maps from $\mathcal{E}(\mathcal{M})$ to $\mathcal{E}(\mathcal{M})$.
Vector fields

- To discuss symmetries we need one more definition.
- Vector fields $X \in \Gamma(TE(M))$ on $E(M)$ (trivial infinite dimensional manifold) can be seen as maps from $E(M)$ to $E(M)$.
- We restrict ourselves to smooth maps X with image in $E_c(M)$. They act on $\mathfrak{F}(\mathcal{M})$ as derivations: $\partial_X F(h) := \langle F^{(1)}(h), X(h) \rangle$
Vector fields

- To discuss symmetries we need one more definition.
- Vector fields $X \in \Gamma(T\mathcal{E}(\mathcal{M}))$ on $\mathcal{E}(\mathcal{M})$ (trivial infinite dimensional manifold) can be seen as maps from $\mathcal{E}(\mathcal{M})$ to $\mathcal{E}(\mathcal{M})$.
- We restrict ourselves to smooth maps X with image in $\mathcal{E}_c(\mathcal{M})$. They act on $\mathcal{F}(\mathcal{M})$ as derivations: $\partial_X F(h) := \langle F^{(1)}(h), X(h) \rangle$
- We consider only the multilocal (products of local vector fields and local functionals) vector fields with compact spacetime support.
To discuss symmetries we need one more definition.

Vector fields $X \in \Gamma(T\mathcal{E}(\mathcal{M}))$ on $\mathcal{E}(\mathcal{M})$ (trivial infinite dimensional manifold) can be seen as maps from $\mathcal{E}(\mathcal{M})$ to $\mathcal{E}(\mathcal{M})$.

We restrict ourselves to smooth maps X with image in $\mathcal{E}_c(\mathcal{M})$. They act on $\mathcal{F}(\mathcal{M})$ as derivations: $\partial_X F(h) := \langle F^{(1)}(h), X(h) \rangle$

We consider only the multilocal (products of local vector fields and local functionals) vector fields with compact spacetime support.

$\mathcal{V}(\mathcal{M}) \equiv$ the space of vector fields with above properties.
Vector fields

- To discuss symmetries we need one more definition.
- Vector fields $X \in \Gamma(T\mathcal{E}(\mathcal{M}))$ on $\mathcal{E}(\mathcal{M})$ (trivial infinite dimensional manifold) can be seen as maps from $\mathcal{E}(\mathcal{M})$ to $\mathcal{E}(\mathcal{M})$.
- We restrict ourselves to smooth maps X with image in $\mathcal{E}_c(\mathcal{M})$. They act on $\mathcal{F}(\mathcal{M})$ as derivations: $\partial_X F(h) := \langle F^{(1)}(h), X(h) \rangle$
- We consider only the multilocal (products of local vector fields and local functionals) vector fields with compact spacetime support.
- $\mathcal{V}(\mathcal{M})$ = the space of vector fields with above properties.
- \mathcal{V} becomes a (covariant) functor after setting: $\mathcal{V}\chi(X) = \mathcal{E}_c\chi \circ X \circ \mathcal{E}\chi$.

Vector fields
Fields as natural transformations

In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. For the sake of this talk let $\Phi \in \text{Nat}(\mathcal{D}, \mathcal{F})$, where \mathcal{D} is the functor of test function spaces $\mathcal{D}(\mathcal{M}) = \mathcal{C}_c^\infty(\mathcal{M})$ (one could substitute \mathcal{F} with a functor to the category of Poisson or C^* algebras).
Fields as natural transformations

In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. For the sake of this talk let $\Phi \in \text{Nat}(\mathcal{D}, \mathcal{F})$, where \mathcal{D} is the functor of test function spaces $\mathcal{D}(\mathcal{M}) = C_c^\infty(\mathcal{M})$ (one could substitute \mathcal{F} with a functor to the category of Poisson or C^* algebras).

The condition for Φ to be a natural transformation: $\Phi_{\mathcal{O}}(f)[\chi^*h] = \Phi_{\mathcal{M}}(\chi_*f)[h]$.
Fields as natural transformations

- In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003] fields are natural transformation between certain functors. For the sake of this talk let $\Phi \in \text{Nat}(\mathcal{D}, \mathcal{F})$, where \mathcal{D} is the functor of test function spaces $\mathcal{D}(\mathcal{M}) = C^\infty_c(\mathcal{M})$ (one could substitute \mathcal{F} with a functor to the category of Poisson or C^* algebras).

- The condition for Φ to be a natural transformation: $\Phi_\mathcal{O}(f)[\chi^* h] = \Phi_\mathcal{M}(\chi^* f)[h]$.

- In classical gravity we understand physical quantities not as pointwise objects but rather as something defined on all the spacetimes in a coherent way.
The dynamics is introduced by a generalized Lagrangian L which is a natural transformation between functors \mathcal{D} and \mathcal{F}_{loc}. The action $S(L)$ is an equivalence class of Lagrangians, where $L_1 \sim L_2$ if $\text{supp}(L_1,\mathcal{M} - L_2,\mathcal{M})(f) \subset \text{supp}df \forall f \in \mathcal{D}(\mathcal{M})$.
Dynamics and symmetries

- The dynamics is introduced by a **generalized Lagrangian** L which is a natural transformation between functors \mathcal{D} and \mathcal{F}_{loc}. The **action** $S(L)$ is an equivalence class of Lagrangians, where $L_1 \sim L_2$ if $\text{supp}(L_1,\mathcal{M} - L_2,\mathcal{M})(f) \subset \text{supp} df \ \forall f \in \mathcal{D}(\mathcal{M})$.

- For GR: $L_{(M,g)}(f)[h] \overset{\dagger}{=} \int R[\tilde{g}]f \ d \text{vol}_{(M,\tilde{g})}, \quad \tilde{g} = g + h$.

text is contained in the image.
Dynamics and symmetries

The dynamics is introduced by a generalized Lagrangian L which is a natural transformation between functors D and \mathcal{F}_{loc}. The action $S(L)$ is an equivalence class of Lagrangians, where $L_1 \sim L_2$ if $\text{supp}(L_1,\mathcal{M} - L_2,\mathcal{M})(f) \subset \text{supp} df \ \forall f \in D(\mathcal{M})$.

For GR: $L_{(M,g)}(f)[h] \doteq \int R[\tilde{g}]f \ d \text{vol}_{(M,\tilde{g})}$, $\tilde{g} = g + h$.

The E-L derivative of $S(L)$ is a natural transformation $S' : \mathcal{E} \rightarrow \mathcal{E}'$ defined as $\langle S'_M(h_0), h \rangle = \langle L_M(f)^{(1)}(h_0), h \rangle$, where $f \equiv 1$ on supp h. The field equation is: $S'_M(h_0) = 0$. The space of solutions is denoted by $\mathcal{E}_S(\mathcal{M})$.
The dynamics is introduced by a generalized Lagrangian L which is a natural transformation between functors \mathcal{D} and \mathcal{F}_{loc}. The action $S(L)$ is an equivalence class of Lagrangians, where $L_1 \sim L_2$ if $\text{supp}(L_1,\mathcal{M} - L_2,\mathcal{M})(f) \subset \text{supp}df \ \forall f \in \mathcal{D}(\mathcal{M})$.

For GR: $L_{(M,g)}(f)[h] \doteq \int R[\tilde{g}]f \text{ d vol}_{(M,\tilde{g})}$, $\tilde{g} = g + h$.

The E-L derivative of $S(L)$ is a natural transformation $S' : \mathcal{E} \rightarrow \mathcal{E}'$ defined as $\langle S'_\mathcal{M}(h_0), h \rangle = \langle L_\mathcal{M}(f)^{(1)}(h_0), h \rangle$, where $f \equiv 1$ on $\text{supp} h$. The field equation is: $S'_\mathcal{M}(h_0) = 0$. The space of solutions is denoted by $\mathcal{E}_S(\mathcal{M})$.

A symmetry of S is a direction in $\mathcal{E}(\mathcal{M})$ in which the action is constant, i.e. it is a vector field $X \in \mathcal{V}(\mathcal{M})$ such that $\forall h_0 \in \mathcal{E}(\mathcal{M})$: $0 = \langle S'_\mathcal{M}(h_0), X(h_0) \rangle$.
Since our discussion is local we can concentrate on infinitesimal
diffeomorphisms, i.e. vector fields in $\mathfrak{X}(\mathcal{M}) \equiv \Gamma(TM)$. This
assignment can also be made functorial.
Since our discussion is local we can concentrate on infinitesimal
diffeomorphisms, i.e. vector fields in $\mathfrak{X}(\mathcal{M}) \doteq \Gamma(TM)$. This
assignment can also be made functorial.

We can now define a Lie algebra \mathfrak{X}, which provides us with a
notion of transforming all the spacetimes in a coherent way:

$$
\mathfrak{X} \doteq \prod_{\mathcal{M} \in \text{Obj}(\text{Loc})} \mathfrak{X}(\mathcal{M})
$$
Diffeomorphism invariance

- Let $\vec{\xi} \in \mathcal{X}$ with all the components compactly supported and $\alpha_\mathcal{M} = \exp(\xi_\mathcal{M})$ a family of diffeomorphisms constructed via the exponential mapping. The action of diffeomorphisms on natural transformations is given by:

$$(\bar{\alpha}\Phi)_{(M,g)}(f)[h] = \Phi_{(M,g)}(\alpha^{-1}_M f)[\alpha^*_M \tilde{g} - g].$$

- The derived action reads:

$$\left(\bar{\xi}\Phi\right)_{(M,g)}(f)[h] =$$

$$\left\langle (\Phi_{(M,g)}(f))^{(1)}(h), \mathcal{L}_{\xi_\mathcal{M}} \tilde{g} \right\rangle + \Phi_{(M,g)}(\mathcal{L}_{\xi_\mathcal{M}} f)[h]$$

- The right hand side is well defined also if we drop the compact support condition on $\vec{\xi}$, so we can adapt the above formula as the definition of the action of \mathcal{X} on $\text{Nat}(\mathcal{D}, \mathcal{F})$.
Diffeomorphism invariance

Let $\vec{\xi} \in \mathcal{X}$ with all the components compactly supported and $\alpha_M = \exp(\xi_M)$ a family of diffeomorphisms constructed via the exponential mapping. The action of diffeomorphisms on natural transformations is given by:

$$(\vec{\alpha} \Phi)_{(M, g)}(f)[h] = \Phi_{(M, g)}(\alpha^{-1}_M \ast f)[\alpha^*_M \tilde{g} - g].$$

The derived action reads:

$$(\vec{\xi} \Phi)_{(M, g)}(f)[h] =$$

$$\langle (\Phi_{(M, g)}(f))^{(1)}(h), \mathcal{L}_{\xi_M} \tilde{g} \rangle + \Phi_{(M, g)}(\mathcal{L}_{\xi_M} f)[h]$$

The right hand side is well defined also if we drop the compact support condition on $\vec{\xi}$, so we can adapt the above formula as the definition of the action of \mathcal{X} on $\text{Nat}(\mathcal{D}, \mathcal{F})$.

Diffeomorphism invariance is now the statement that: $\vec{\xi} \Phi = 0$.
Diffeomorphism invariance

- Let $\vec{\xi} \in \mathcal{X}$ with all the components compactly supported and $\alpha_{\mathcal{M}} = \exp(\xi_{\mathcal{M}})$ a family of diffeomorphisms constructed via the exponential mapping. The action of diffeomorphisms on natural transformations is given by:
 $$(\tilde{\alpha}\Phi)_{(M, g)}(f)[h] = \Phi_{(M, g)}(\alpha_{M}^{-1} f)[\alpha_{M}^* \tilde{g} - g].$$
- The derived action reads:
 $$(\tilde{\xi}\Phi)_{(M, g)}(f)[h] =$$
 $$\left\langle (\Phi_{(M, g)}(f))^{(1)}(h), \mathcal{L}_{\xi_{\mathcal{M}}} \tilde{g} \right\rangle + \Phi_{(M, g)}(\mathcal{L}_{\xi_{\mathcal{M}}} f)[h]$$
- The right hand side is well defined also if we drop the compact support condition on $\vec{\xi}$, so we can adapt the above formula as the definition of the action of \mathcal{X} on $\text{Nat}(\mathcal{D}, \mathcal{F})$.
- Diffeomorphism invariance is now the statement that: $\tilde{\xi}\Phi = 0$.
- Example: $\int R[\tilde{g}] f \, d \text{vol}_{(M, \tilde{g})}$ is invariant, but $\int R[\tilde{g}] f \, d \text{vol}_{(M, g)}$ is not.
A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

Objective: characterize the space of gauge invariant functionals $\mathcal{F}_{inv}^S(M)$ on the space of solutions of EOM’s: $\mathcal{E}_S(M)$.
A general method to quantize theories with local symmetries is the so-called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

Objective: characterize the space of gauge invariant functionals \(\tilde{S}_S^{\text{inv}}(M) \) on the space of solutions of EOM’s: \(\mathcal{E}_S(M) \).

Idea: note that \(\mathcal{E}_S(M) \) locally can be seen critical manifold of the Lagrangian \(L_M(f) : \mathcal{E}(M) \rightarrow \mathbb{R} \) (zero locus of \(S'_M \)).
A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

Objective: characterize the space of gauge invariant functionals \(\mathcal{F}_{\text{inv}}^S(M) \) on the space of solutions of EOM’s: \(\mathcal{E}_S(M) \).

Idea: note that \(\mathcal{E}_S(M) \) locally can be seen critical manifold of the Lagrangian \(L_M(f) : \mathcal{E}(M) \to \mathbb{R} \) (zero locus of \(S'_M \)).

We identify \(\mathcal{E}_S(M) \) with its algebra of functions \(\mathcal{F}_S(M) \) and characterize it by its Koszul resolution (see [Costello 2011] for a finite dimensional version).
A general method to quantize theories with local symmetries is the so-called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

Objective: characterize the space of gauge invariant functionals $\mathcal{F}_S^{\text{inv}}(\mathcal{M})$ on the space of solutions of EOM’s: $\mathcal{E}_S(\mathcal{M})$.

Idea: note that $\mathcal{E}_S(\mathcal{M})$ locally can be seen critical manifold of the Lagrangian $L_\mathcal{M}(f) : \mathcal{E}(\mathcal{M}) \rightarrow \mathbb{R}$ (zero locus of $S'_\mathcal{M}$).

We identify $\mathcal{E}_S(\mathcal{M})$ with its algebra of functions $\mathcal{F}_S(\mathcal{M})$ and characterize it by its Koszul resolution (see [Costello 2011] for a finite dimensional version).

$$\mathcal{F}_S(\mathcal{M}) = H_0 \left(\bigwedge \mathfrak{V}(\mathcal{M}), S'_\mathcal{M}(\cdot) \right).$$
A general method to quantize theories with local symmetries is the so-called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

Objective: characterize the space of gauge invariant functionals $\mathcal{F}_{inv}^S(\mathcal{M})$ on the space of solutions of EOM’s: $\mathcal{E}_S(\mathcal{M})$.

Idea: note that $\mathcal{E}_S(\mathcal{M})$ locally can be seen critical manifold of the Lagrangian $L_M(f) : \mathcal{E}(\mathcal{M}) \to \mathbb{R}$ (zero locus of S'_M).

We identify $\mathcal{E}_S(\mathcal{M})$ with its algebra of functions $\mathcal{F}_S(\mathcal{M})$ and characterize it by its Koszul resolution (see [Costello 2011] for a finite dimensional version).

$$\mathcal{F}_S(\mathcal{M}) = H_0\left(\bigwedge \mathfrak{D}(\mathcal{M}), S'_M(.) \right).$$

The underlying algebra of this differential complex is a certain completion of the odd cotangent bundle $\Pi T^* \mathcal{E}(\mathcal{M})$ of $\mathcal{E}(\mathcal{M})$.
To incorporate the gauge invariance we replace the original configuration space $\mathcal{E}(\mathcal{M})$ with a graded manifold $\overline{\mathcal{E}}(\mathcal{M}) \doteq \mathcal{E}(\mathcal{M}) \oplus \mathfrak{X}(\mathcal{M})$ characterized by it’s algebra of functions $\mathcal{F}(\mathcal{M}) \hat{\otimes} \bigwedge \mathfrak{X}'(\mathcal{M}) = C^\infty_m \left(\mathcal{E}(\mathcal{M}), \bigwedge \mathcal{V}(\mathcal{M}) \right)$.

The underlying algebra of the Koszu resolution is the odd cotangent bundle $\Pi T^* \overline{\mathcal{E}}$ of $\overline{\mathcal{E}}$ and taking into account regularity conditions and topological completion we obtain the BV complex:

$$\mathcal{BV}(\mathcal{M}) = C^\infty_m \left(\mathcal{E}(\mathcal{M}), \bigwedge \mathcal{E}_c(\mathcal{M}) \hat{\otimes} \bigwedge \mathfrak{X}'(\mathcal{M}) \hat{\otimes} S^* \mathfrak{X}_c(\mathcal{M}) \right)$$
To incorporate the gauge invariance we replace the original configuration space $\mathcal{E}(\mathcal{M})$ with a graded manifold $\overline{\mathcal{E}}(\mathcal{M}) \doteq \mathcal{E}(\mathcal{M}) \oplus \mathfrak{x}(\mathcal{M})$ characterized by it’s algebra of functions $\mathcal{F}(\mathcal{M}) \hat{\otimes} \bigwedge \mathfrak{x}'(\mathcal{M}) = C^\infty_{ml} \left(\mathcal{E}(\mathcal{M}), \bigwedge \mathcal{V}(\mathcal{M}) \right)$.

The underlying algebra of the Koszu resolution is the odd cotangent bundle $\Pi T^* \overline{\mathcal{E}}$ of $\overline{\mathcal{E}}$ and taking into account regularity conditions and topological completion we obtain the BV complex:

$$\mathcal{BV}(\mathcal{M}) = C^\infty_{ml} \left(\mathcal{E}(\mathcal{M}), \bigwedge \mathcal{E}_c(\mathcal{M}) \hat{\otimes} \bigwedge \mathfrak{x}'(\mathcal{M}) \hat{\otimes} S^\bullet \mathfrak{x}_c(\mathcal{M}) \right)$$

Antifields: derivations of $\mathcal{F}(\mathcal{M})$, $\#_{af} = 1$, $\#_{gh} = -1$
To incorporate the gauge invariance we replace the original configuration space $\mathcal{E}(\mathcal{M})$ with a graded manifold $\overline{\mathcal{E}}(\mathcal{M}) = \mathcal{E}(\mathcal{M}) \oplus \mathcal{X}(\mathcal{M})$ characterized by it’s algebra of functions $\mathcal{F}(\mathcal{M}) \wedge \mathcal{X}'(\mathcal{M}) = C_{\text{ml}}(\mathcal{E}(\mathcal{M}), \Lambda \mathcal{Y}(\mathcal{M}))$.

The underlying algebra of the Koszul resolution is the odd cotangent bundle $\Pi T^* \overline{\mathcal{E}}$ of $\overline{\mathcal{E}}$ and taking into account regularity conditions and topological completion we obtain the BV complex:

$$\mathcal{BV}(\mathcal{M}) = C_{\text{ml}}(\mathcal{E}(\mathcal{M}), \Lambda \mathcal{E}_c(\mathcal{M}) \otimes \Lambda \mathcal{X}'(\mathcal{M}) \otimes S^\bullet \mathcal{X}_c(\mathcal{M}))$$

- **Antifields**: derivations of $\mathcal{F}(\mathcal{M})$, $\# \text{af} = 1$, $\# \text{gh} = -1$
- **Ghosts**: functionals on the symmetry algebra $\# \text{af} = 0$, $\# \text{gh} = 1$
To incorporate the gauge invariance we replace the original configuration space $\mathcal{E}(\mathcal{M})$ with a graded manifold $\overline{\mathcal{E}}(\mathcal{M}) = \mathcal{E}(\mathcal{M}) \oplus \mathfrak{X}(\mathcal{M})$ characterized by it’s algebra of functions $\mathcal{F}(\mathcal{M}) \otimes \bigwedge \mathfrak{X}'(\mathcal{M}) = C^\infty_m\left(\mathcal{E}(\mathcal{M}), \bigwedge \mathfrak{Y}(\mathcal{M})\right)$.

The underlying algebra of the Koszu resolution is the odd cotangent bundle $\Pi T^*\overline{\mathcal{E}}$ of $\overline{\mathcal{E}}$ and taking into account regularity conditions and topological completion we obtain the BV complex:

$$\mathcal{BV}(\mathcal{M}) = C^\infty_m\left(\mathcal{E}(\mathcal{M}), \bigwedge \mathcal{E}_c(\mathcal{M}) \otimes \bigwedge \mathfrak{X}'(\mathcal{M}) \otimes S^\bullet \mathfrak{X}_c(\mathcal{M})\right)$$

- Antifields: derivations of $\mathcal{F}(\mathcal{M})$, $\#\text{af} = 1$, $\#\text{gh} = -1$
- Ghosts: functionals on the symmetry algebra $\#\text{af} = 0$, $\#\text{gh} = 1$
- Antifields of ghosts: derivations of ghosts $\#\text{af} = 2$, $\#\text{gh} = -2$
To incorporate the gauge invariance we replace the original configuration space $\mathcal{E}(\mathcal{M})$ with a graded manifold $\overline{\mathcal{E}}(\mathcal{M}) = \mathcal{E}(\mathcal{M}) \oplus \mathfrak{X}(\mathcal{M})$ characterized by it’s algebra of functions $\mathcal{F}(\mathcal{M}) \hat{\otimes} \bigwedge \mathfrak{X}'(\mathcal{M}) = \mathcal{C}_\infty^{ml}(\mathcal{E}(\mathcal{M}), \bigwedge \mathfrak{Y}(\mathcal{M}))$.

The underlying algebra of the Koszul resolution is the odd cotangent bundle $\Pi T^*\overline{\mathcal{E}}$ of $\overline{\mathcal{E}}$ and taking into account regularity conditions and topological completion we obtain the BV complex:

$$\mathcal{BV}(\mathcal{M}) = \mathcal{C}_\infty^{ml}(\mathcal{E}(\mathcal{M}), \bigwedge \mathcal{E}_c(\mathcal{M}) \hat{\otimes} \bigwedge \mathfrak{X}'(\mathcal{M}) \hat{\otimes} S^\bullet \mathfrak{X}_c(\mathcal{M}))$$

- Antifields: derivations of $\mathcal{F}(\mathcal{M})$, $\#af = 1$, $\#gh = -1$
- Ghosts: functionals on the symmetry algebra $\#af = 0$, $\#gh = 1$
- Antifields of ghosts: derivations of ghosts $\#af = 2$, $\#gh = -2$
The assignment of the BV complex to the manifold is a functor from \textbf{Loc} to the category of graded algebras.
BV complex extended to natural transformations

- The assignment of the BV complex to the manifold is a functor from Loc to the category of graded algebras.
- Extending the algebra of functionals to the BV complex implies that the generalized fields should be also extended:

$$Fld = \bigoplus_{k=0}^{\infty} \text{Nat}(\mathcal{E}_c^k, \mathcal{BV}),$$

where \mathcal{E}_c^k be a functor from the category Loc to the product category Vec^k, that assigns to a spacetime \mathcal{M} a k-fold product of the test section spaces $\mathcal{E}_c(\mathcal{M}) \times \ldots \times \mathcal{E}_c(\mathcal{M})$.
The assignment of the BV complex to the manifold is a functor from Loc to the category of graded algebras.

Extending the algebra of functionals to the BV complex implies that the generalized fields should be also extended:

$$\text{Fld} = \bigoplus_{k=0}^{\infty} \text{Nat}(\mathcal{E}_c^k, \mathcal{BV}) ,$$

where \mathcal{E}_c^k be a functor from the category Loc to the product category Vec^k, that assigns to a spacetime \mathcal{M} a k-fold product of the test section spaces $\mathcal{E}_c(\mathcal{M}) \times \ldots \times \mathcal{E}_c(\mathcal{M})$.

The set Fld becomes a graded algebra if we set:

$$\Phi \Psi \big|_{\mathcal{M}} (f_1, \ldots, f_{p+q}) =$$

$$= \frac{1}{p! q!} \sum_{\pi \in P_{p+q}} \Phi \big|_{\mathcal{M}} (f_{\pi(1)}, \ldots, f_{\pi(p)}) \Psi \big|_{\mathcal{M}} (f_{\pi(p+1)}, \ldots, f_{\pi(p+q)}) .$$

Katarzyna Rejzner

QG in LCFT
BV complex extended to natural transformations

Since $\mathfrak{BV}(\mathcal{M})$ is the algebra of vector fields on the graded manifold $\overline{E}(\mathcal{M})$, we can equip it with the Schouten bracket:
BV complex extended to natural transformations

Since $\mathcal{B}(\mathcal{M})$ is the algebra of vector fields on the graded manifold $\mathcal{E}(\mathcal{M})$, we can equip it with the Schouten bracket:

- $\{X, F\} = \partial_X F$ for X a vector field and F function,
BV complex extended to natural transformations

- Since $\mathfrak{W}(\mathcal{M})$ is the algebra of vector fields on the graded manifold $\mathfrak{E}(\mathcal{M})$, we can equip it with the Schouten bracket:
 - $\{X, F\} = \partial X F$ for X a vector field and F function,
 - $\{X, Y\} = [X, Y]$ for X, Y a vector fields,
Since $\mathcal{W}(\mathcal{M})$ is the algebra of vector fields on the graded manifold $\mathcal{E}(\mathcal{M})$, we can equip it with the Schouten bracket:

- $\{X, F\} = \partial_X F$ for X a vector field and F function,
- $\{X, Y\} = [X, Y]$ for X, Y a vector fields,
- graded Leibniz rule.
BV complex extended to natural transformations

Since $\mathcal{BV}(\mathcal{M})$ is the algebra of vector fields on the graded manifold $\mathcal{E}(\mathcal{M})$, we can equip it with the Schouten bracket:
- $\{X, F\} = \partial X F$ for X a vector field and F function,
- $\{X, Y\} = [X, Y]$ for X, Y a vector fields,
- graded Leibniz rule.

The BV-differential on Fld is given by:

$$(s\Phi)(\mathcal{M})(f) = \{\Phi_{\mathcal{M}}(f), S + \gamma\} + \Phi_{\mathcal{M}}(\mathcal{L}_C f),$$

where $C \in \mathcal{X}(\mathcal{M})$ is the ghost and γ is the Chevalley-Eilenberg differential, which acts on Fld via infinitesimal diffeomorphism transformations along the ghost fields C. For $\Phi \in \text{Nat}(\mathcal{E}_c, \mathcal{F})$:

$$(\gamma \Phi)(\mathcal{M})(f)(h) := \left\langle (\Phi_{\mathcal{M}}(f))^{(1)}(h), \mathcal{L}_C \tilde{g} \right\rangle,$$
BV complex extended to natural transformations

- Since $\mathcal{V}(\mathcal{M})$ is the algebra of vector fields on the graded manifold $\mathcal{E}(\mathcal{M})$, we can equip it with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X, Y\} = [X, Y]$ for X, Y a vector fields,
 - graded Leibniz rule.

- The BV-differential on Fld is given by:

 $$(s\Phi)_\mathcal{M}(f) = \{\Phi_\mathcal{M}(f), S + \gamma\} + \Phi_\mathcal{M}(\mathcal{L}_C f),$$

 where $C \in \mathfrak{X}(\mathcal{M})$ is the ghost and γ is the Chevalley-Eilenberg differential, which acts on Fld via infinitesimal diffeomorphism transformations along the ghost fields C. For $\Phi \in \text{Nat}(\mathcal{E}_c, \mathfrak{F})$:

 $$\left(\gamma\Phi\right)_\mathcal{M}(f)(h) := \left\langle (\Phi_\mathcal{M}(f))^{(1)}(h), \mathcal{L}_C \tilde{g}\right\rangle,$$

- The gauge invariant observables are given by:

 $$\text{Fld}_{\text{inv}} := H^0(Fld, s)$$
BV complex extended to natural transformations

- Since $\mathfrak{BV}(\mathcal{M})$ is the algebra of vector fields on the graded manifold $\mathcal{E}(\mathcal{M})$, we can equip it with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X, Y\} = [X, Y]$ for X, Y a vector fields,
 - graded Leibniz rule.
- The BV-differential on Fld is given by:
 $$(s\Phi)_\mathcal{M}(f) = \{\Phi_\mathcal{M}(f), S + \gamma\} + \Phi_\mathcal{M}(\mathcal{L} Cf),$$
 where $C \in \mathfrak{X}(\mathcal{M})$ is the ghost and γ is the Chevalley-Eilenberg differential, which acts on Fld via infinitesimal diffeomorphism transformations along the ghost fields C. For $\Phi \in \text{Nat}(\mathcal{E}_c, \mathfrak{F})$:
 $$(\gamma\Phi)_\mathcal{M}(f)(h) := \left\langle (\Phi_\mathcal{M}(f))^{(1)}(h), \mathcal{L} C\tilde{g} \right\rangle,$$
- The gauge invariant observables are given by:
 $$Fld_{\text{inv}} := H^0(Fld, s)$$
- For example: $\Phi_{(M, g)}(f)(h) = \int_M R_{\mu\nu\alpha\beta}[\tilde{g}] R^{\mu\nu\alpha\beta}[\tilde{g}] f d\text{vol}(M, \tilde{g}).$
Gauge fixing

- Gauge fixing is implemented by means of the so called gauge fixing fermion $\Psi \in Fld$ with ghost number $\#gh = 1$.
Gauge fixing

- Gauge fixing is implemented by means of the so called gauge fixing fermion $\Psi \in Fld$ with ghost number $\#gh = 1$.
- We define an automorphism of $\mathcal{BV}(\mathcal{M})$ by

$$\alpha_\Psi(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \{\Psi, \mathcal{M}(f), \ldots, \{\Psi, \mathcal{M}(f), X\} \ldots \},$$

where $f \equiv 1$ on the support of X. This automorphism in a simple way extends to Fld.
Gauge fixing

- Gauge fixing is implemented by means of the so called gauge fixing fermion $\Psi \in Fld$ with ghost number $\#gh = 1$.
- We define an automorphism of $\mathcal{BV}(\mathcal{M})$ by

$$\alpha_{\Psi}(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \{\Psi_{\mathcal{M}}(f), \ldots, \{\Psi_{\mathcal{M}}(f), X\} \ldots\},$$

where $f \equiv 1$ on the support of X. This automorphism in a simple way extends to Fld.
- We obtain a new extended action $\tilde{S} = \alpha_{\Psi}(S + \gamma)$ and gauge-fixed BV differential $s^\Psi = \alpha_{\Psi} \circ s \circ \alpha_{\Psi}^{-1}$.
Gauge fixing

- Gauge fixing is implemented by means of the so called gauge fixing fermion $\Psi \in Fld$ with ghost number $\#gh = 1$.

- We define an automorphism of $\mathfrak{BV}(\mathcal{M})$ by

$$\alpha_\Psi(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \{\Psi_{\mathcal{M}}(f), \ldots, \{\Psi_{\mathcal{M}}(f), X\} \ldots \},$$

where $f \equiv 1$ on the support of X. This automorphism in a simple way extends to Fld.

- We obtain a new extended action $\tilde{S} \doteq \alpha_\Psi(S + \gamma)$ and gauge-fixed BV differential $s^\Psi = \alpha_\Psi \circ s \circ \alpha^{-1}_\Psi$

- It holds: $H^0(s^\Psi, \alpha_\Psi(Flb)) = H^0(s, Flb) = Flb_{\text{inv}}$.
Equations of motion and Poisson bracket

As an output of classical field theory we have a graded manifold \mathcal{E} and an extended action \tilde{S}. Now we apply to this data the deformation quantization.
Equations of motion and Poisson bracket

- As an output of classical field theory we have a graded manifold \mathcal{E} and an extended action \tilde{S}. Now we apply to this data the deformation quantization.

- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0^g + V^g$, where S_0 is quadratic in fields and has $\#af = 0$.
Equations of motion and Poisson bracket

- As an output of classical field theory we have a graded manifold \mathcal{E} and an extended action \tilde{S}. Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0^g + V^g$, where S_0 is quadratic in fields and has $\#af = 0$.
- For each globally hyperbolic background g we have the retarded and advanced Green’s functions $\Delta_g^{R/A}$ for the EOM’s derived from S_0^g.
Equations of motion and Poisson bracket

- As an output of classical field theory we have a graded manifold \mathcal{E} and an extended action \tilde{S}. Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0^g + V^g$, where S_0 is quadratic in fields and has $\#af = 0$.
- For each globally hyperbolic background g we have the retarded and advanced Green’s functions $\Delta^R_A g$ for the EOM’s derived from $S_0 g$.
- Using this input we define the free Poisson bracket on $\mathcal{BV}(M)$

$$\{F, G\}^g_0 = \left\langle F^{(1)}, \Delta G^{(1)} \right\rangle \quad \Delta g = \Delta^R g - \Delta^A g,$$
Equations of motion and Poisson bracket

- As an output of classical field theory we have a graded manifold \mathcal{E} and an extended action \tilde{S}. Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0 g + V^g$, where S_0 is quadratic in fields and has $\# \text{af} = 0$.
- For each globally hyperbolic background g we have the retarded and advanced Green’s functions $\Delta_g^{R/A}$ for the EOM’s derived from $S_0 g$.
- Using this input we define the free Poisson bracket on $\mathcal{MV}(\mathcal{M})$

$$\{ F, G \}_0^g = \left\langle F^{(1)}, \Delta_g G^{(1)} \right\rangle$$

$$\Delta_g = \Delta_g^R - \Delta_g^A$$

- This Poisson structure can be naturally extended to a Poisson bracket $\{.,.\}_0$ on Fld.
We start with the deformation quantization of \((\text{Fld}, \{., .\}_0)\).
We start with the deformation quantization of \((\mathcal{F}ld, \{.,.\}_0)\).

We need to include into the space of functionals on \(\mathcal{E}(\mathcal{M})\) some more singular objects. The right notion of regularity is related to a certain wavefront set property of Hadamard 2-point functions (microlocal spectrum condition). The resulting space will be denoted by \(\mathcal{BV}_{\mu c}(\mathcal{M})\).
We start with the deformation quantization of \((Fld, \{.,.\}_0)\).

We need to include into the space of functionals on \(\mathcal{E}(\mathcal{M})\) some more singular objects. The right notion of regularity is related to a certain wavefront set property of Hadamard 2-point functions (microlocal spectrum condition). The resulting space will be denoted by \(\mathcal{V}_\mu_{0c}(\mathcal{M})\).

The deformation quantization of \((\mathcal{V}_\mu_{0c}(\mathcal{M}), \{.,.\}_0^g)\) can be performed in the standard way, by introducing a \(\star\)-product:

\[
(F \star_{H} G) \doteq m \circ \exp(i\hbar \Gamma \omega_H)(F \otimes G),
\]

where \(\Gamma \omega_H \doteq \frac{1}{2} \int dx \, dy \omega_H(x, y) \frac{\delta}{\delta \varphi(x)} \otimes \frac{\delta}{\delta \varphi(y)}\) and

\[\omega_H = \frac{i}{2} \Delta g + H\] is the Hadamard 2-point function (satisfies the linearized EOM’s in both arguments and the \(\muSC\)).
With some technical considerations the deformation quantization on each M leads to a deformation quantization on the space of fields and we obtain $\{Fl_{\mu c}[\hbar, \lambda], \star\}$.
Interaction

- With some technical considerations the deformation quantization on each \mathcal{M} leads to a deformation quantization on the space of fields and we obtain $\{Fld_{\mu c}[[\hbar, \lambda]], \star\}$.
- In the next step we have to introduce the interaction, i.e. consider the algebras $\{\mathcal{B}\mathcal{V}_{\mu c}(\mathcal{M})[[\hbar, \lambda]], \star_H\}$ and define on them the renormalized time-ordered products \cdot_T by the Epstein-Glaser method.
Interaction

- With some technical considerations the deformation quantization on each \mathcal{M} leads to a deformation quantization on the space of fields and we obtain $\{\text{Fld}_{\mu c}[[\hbar, \lambda]], \star\}$.
- In the next step we have to introduce the interaction, i.e. consider the algebras $\{\mathfrak{BV}_{\mu c}(\mathcal{M})[[\hbar, \lambda]], \star_H\}$ and define on them the renormalized time-ordered products \cdot_T by the Epstein-Glaser method.
- Time ordered products on different \mathcal{M} can be defined in a covariant way, which allows to extend it to a product on $\text{Fld}_{\mu c}[[\hbar, \lambda]]$.

Katarzyna Rejzner
QG in LCFT
With some technical considerations the deformation quantization on each \mathcal{M} leads to a deformation quantization on the space of fields and we obtain $\{\mathcal{F}ld_{\mu c}[[\hbar, \lambda]], \star\}$.

In the next step we have to introduce the interaction, i.e. consider the algebras $\{\mathcal{BV}_{\mu c}(\mathcal{M})[[\hbar, \lambda]], \star_H\}$ and define on them the renormalized time-ordered products \cdot_T by the Epstein-Glaser method.

Time ordered products on different \mathcal{M} can be defined in a covariant way, which allows to extend it to a product on $\mathcal{F}ld_{\mu c}[[\hbar, \lambda]]$.

One can define the formal S-matrix as: $S(V^g) \doteq e^{V^g}_T$.
Interaction

- With some technical considerations the deformation quantization on each \mathcal{M} leads to a deformation quantization on the space of fields and we obtain $\{\text{Fld}_{\mu c}[[\hbar, \lambda]], \ast\}$.
- In the next step we have to introduce the interaction, i.e. consider the algebras $\{\mathfrak{B} \mathfrak{W}_{\mu c}(\mathcal{M})[[\hbar, \lambda]], \ast_H\}$ and define on them the renormalized time-ordered products $\cdot_{\mathcal{T}}$ by the Epstein-Glaser method.
- Time ordered products on different \mathcal{M} can be defined in a covariant way, which allows to extend it to a product on $\text{Fld}_{\mu c}[[\hbar, \lambda]]$.
- One can define the formal S-matrix as: $\mathcal{S}(V^g) \doteq e_{\mathcal{T}}^{V^g}$.
- Interacting fields are obtained from free ones in $\{\text{Fld}_{\mu c}[[\hbar, \lambda]], \ast\}$ by the Bogoliubov formula:

$$ (R_V(\Phi))_\mathcal{M}(f) \doteq \left. \frac{d}{d\lambda} \right|_{\lambda=0} \mathcal{S}(V^g)^{-1} \ast \mathcal{S}(V^g + \lambda \Phi_\mathcal{M}(f)) . $$
In general relativity the basic physical objects are fields (natural transformations), since they are defined not on a fixed background but rather on a class of spacetimes in a coherent way.
In general relativity the basic physical objects are fields (natural transformations), since they are defined not on a fixed background but rather on a class of spacetimes in a coherent way.

The BV construction can be applied the algebra of fields Fld and gives a homological interpretation to the notion of gauge invariant physical quantities in general relativity.
Quantized geometrical structures

- In general relativity the basic physical objects are fields (natural transformations), since they are defined not on a fixed background but rather on a class of spacetimes in a coherent way.

- The BV construction can be applied the algebra of fields Fld and gives a homological interpretation to the notion of gauge invariant physical quantities in general relativity.

- The algebra $Fld_{μc}$ can be equipped with the noncommutative $⋆$-product, which provides the deformation quantization of the free theory. The interaction is next introduced in the perturbative way and we obtain a notion of interacting quantum fields $R_V(Φ)$, where $Φ$ is a classical field constructed covariantly from the metric. For example: $\int R[\tilde{g}]f \ d \text{vol}(M,\tilde{g})$.
Although we parametrize $Fld_{\mu c}$ with spacetimes, the construction is fully covariant and physical quantities are invariant under reparametrization.
Physical interpretation

- Although we parametrize $Fld_{\mu c}$ with spacetimes, the construction is fully covariant and physical quantities are invariant under reparametrization.

- The background independence would mean that the algebraic structure on $Fld_{\mu c}$ doesn’t depend on the split into the free and interacting part. This can be obtained as a certain renormalization condition called perturbative agreement ([Hollands, Wald, 2004] for the scalar field). Work in progress.
Physical interpretation

- Although we parametrize $Fld_{\mu c}$ with spacetimes, the construction is fully covariant and physical quantities are invariant under reparametrization.

- The background independence would mean that the algebraic structure on $Fld_{\mu c}$ doesn’t depend on the split into the free and interacting part. This can be obtained as a certain renormalization condition called perturbative agreement ([Hollands, Wald, 2004] for the scalar field). Work in progress.

- The physical interpretation of the theory is provided by constructing states on $\{Fld_{\mu c}[[\hbar, \lambda]], \star\}$. This problem is not entirely solved, since one needs to prove the existence of “gauge invariant” states on arbitrary \mathcal{M} for the linearized theory. Up to now states can be explicitly given only on some special classes of spacetimes (for example ultrastatic).
Spacetime in Planck scale

- Even without solving the question of states in full generality there are some effects that can be calculated in our framework. For example one can investigate the localization of events.
Spacetime in Planck scale

- Even without solving the question of states in full generality there are some effects that can be calculated in our framework. For example one can investigate the localization of events.
- The principle of gravitational stability against localization of events was proposed in [Doplicher, Fredenhagen, Roberts, CMP 95]. It states that a physical reason for Planck scale noncommutativity of spacetime is the fact that we cannot measure all the spacetime coordinates with arbitrary precision, because this would result in forming a trapped surface. This principle was used in [DFR 95] to derive the STUR in a simplified model.
Spacetime in Planck scale

- Even without solving the question of states in full generality there are some effects that can be calculated in our framework. For example one can investigate the localization of events.
- The principle of gravitational stability against localization of events was proposed in [Doplicher, Fredenhagen, Roberts, CMP 95]. It states that a physical reason for Planck scale noncommutativity of spacetime is the fact that we cannot measure all the spacetime coordinates with arbitrary precision, because this would result in forming a trapped surface. This principle was used in [DFR 95] to derive the STUR in a simplified model.
- In a recent work of [Doplicher, Morsella, Pinamonti 2012] this problem is studied for a model of scalar field coupled to gravity in the semiclassical approximation. We hope that using our notions of quantized metric and curvature one can move this one step further and include quantum gravity corrections.
Thank you for your attention