Effective quantum gravity from the point of view of perturbative algebraic QFT

Kasia Rejzner

University of York

Marcel Grossmann Meeting MG14,
13.07.2015
Outline of the talk

1. Algebraic approach to QFT
 - AQFT
 - LCQFT

2. Quantum gravity
 - Effective quantum gravity
 - Symmetries
 - Background independence
A convenient framework to investigate conceptual problems in QFT is the **Algebraic Quantum Field Theory** (recently also perturbative AQFT).
A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory (recently also perturbative AQFT).

It started as the axiomatic framework of Haag-Kastler [Haag & Kastler 64]: a model is defined by associating to each region \mathcal{O} of Minkowski spacetime the algebra $\mathcal{A}(\mathcal{O})$ of observables that can be measured in \mathcal{O}.
A convenient framework to investigate conceptual problems in QFT is the **Algebraic Quantum Field Theory** (recently also perturbative AQFT).

It started as the axiomatic framework of **Haag-Kastler** [Haag & Kastler 64]: a model is defined by associating to each region \mathcal{O} of Minkowski spacetime the algebra $\mathcal{A}(\mathcal{O})$ of observables that can be measured in \mathcal{O}.

The physical notion of subsystems is realized by the condition of **isotony**, i.e.: $\mathcal{O}_2 \supset \mathcal{O}_1 \Rightarrow \mathcal{A}(\mathcal{O}_2) \supset \mathcal{A}(\mathcal{O}_1)$. We obtain a **net of algebras**.
Difficulties in QFT on curved spacetimes

To include effects of general relativity into QFT, one has to be able to describe quantum fields on a general class of spacetimes.
Difficulties in QFT on curved spacetimes

To include effects of general relativity into QFT, one has to be able to describe quantum fields on a general class of spacetimes.

- Generically, the group of spacetime symmetries is trivial, so concept of particles as irreducible representations of such a group doesn’t make sense.
Difficulties in QFT on curved spacetimes

To include effects of general relativity into QFT, one has to be able to describe quantum fields on a general class of spacetimes.

- Generically, the group of spacetime symmetries is trivial, so concept of \textit{particles} as irreducible representations of such a group doesn’t make sense.

- The concept of the \textit{vacuum} as the state with no particles also becomes meaningless.
To include effects of general relativity into QFT, one has to be able to describe quantum fields on a general class of spacetimes.

- Generically, the group of spacetime symmetries is trivial, so concept of particles as irreducible representations of such a group doesn’t make sense.

- The concept of the vacuum as the state with no particles also becomes meaningless.

- Transition to imaginary times (Wick rotation) is possible only in special cases.
Difficulties in QFT on curved spacetimes

To include effects of general relativity into QFT, one has to be able to describe quantum fields on a general class of spacetimes.

- Generically, the group of spacetime symmetries is trivial, so concept of particles as irreducible representations of such a group doesn’t make sense.

- The concept of the vacuum as the state with no particles also becomes meaningless.

- Transition to imaginary times (Wick rotation) is possible only in special cases.

- Problems with the Fourier transform: calculations relying on momentum space cannot be performed.
Algebraic QFT on curved spacetimes

- These conceptual problems can be easily solved in the algebraic approach.
These conceptual problems can be easily solved in the algebraic approach.

The corresponding generalization of AQFT is called locally covariant quantum field theory [Hollands & Wald CMP 01 Brunetti, Fredenhagen & Verch CMP 01, Fewster & Verch AHP 12, …].
Algebraic QFT on curved spacetimes

- These conceptual problems can be easily solved in the algebraic approach.
- The corresponding generalization of AQFT is called locally covariant quantum field theory [Hollands & Wald CMP 01, Brunetti, Fredenhagen & Verch CMP 01, Fewster & Verch AHP 12, ...],
- Come to the QFT parallel sessions!
Algebraic QFT on curved spacetimes

- These conceptual problems can be easily solved in the algebraic approach.
- The corresponding generalization of AQFT is called locally covariant quantum field theory [Hollands & Wald CMP 01 Brunetti, Fredenhagen & Verch CMP 01, Fewster & Verch AHP 12,…].

Come to the QFT parallel sessions!

Main advantages
These conceptual problems can be easily solved in the algebraic approach.

The corresponding generalization of AQFT is called locally covariant quantum field theory [Hollands & Wald CMP 01 Brunetti, Fredenhagen & Verch CMP 01, Fewster & Verch AHP 12, ...],

Come to the QFT parallel sessions!

Main advantages

Local algebras of observables $\mathfrak{A}(\emptyset)$ are defined abstractly, the Hilbert space representation comes later (this deals with the non-uniqueness of the vacuum).
Algebraic QFT on curved spacetimes

- These conceptual problems can be easily solved in the algebraic approach.
- The corresponding generalization of AQFT is called locally covariant quantum field theory \cite{HollandsWaldCMP01, BrunettiFredenhagenVerchCMP01, FewsterVerchAHP12},
- Come to the QFT parallel sessions!

Main advantages

- Local algebras of observables $\mathcal{A}(\mathcal{O})$ are defined abstractly, the Hilbert space representation comes later (this deals with the non-uniqueness of the vacuum).
- Algebras $\mathcal{A}(\mathcal{O})$ are constructed using only the local data.
Algebraic QFT on curved spacetimes

- These conceptual problems can be easily solved in the algebraic approach.
- The corresponding generalization of AQFT is called locally covariant quantum field theory [Hollands & Wald CMP 01 Brunetti, Fredenhagen & Verch CMP 01, Fewster & Verch AHP 12,...],
- Come to the QFT parallel sessions!

Main advantages

- Local algebras of observables $\mathcal{A}(\emptyset)$ are defined abstractly, the Hilbert space representation comes later (this deals with the non-uniqueness of the vacuum).
- Algebras $\mathcal{A}(\emptyset)$ are constructed using only the local data.
- Local features of the theory (observables) are separated from the global features (states).
Locally covariant quantum field theory (LCQFT)

- In the original AQFT axioms we associate algebras to regions of a fixed spacetime. Now we go a step further.
Locally covariant quantum field theory (LCQFT)

- In the original AQFT axioms we associate algebras to regions of a fixed spacetimes. Now we go a step further.
- Replace O_1 and O_2 with arbitrary spacetimes $\mathcal{M} = (M, g)$, $\mathcal{N} = (N, g')$ and require the embedding $\psi : \mathcal{M} \rightarrow \mathcal{N}$ to be an isometry.
Locally covariant quantum field theory (LCQFT)

- In the original AQFT axioms we associate algebras to regions of a fixed spacetimes. Now we go a step further.
- Replace O_1 and O_2 with arbitrary spacetimes $\mathcal{M} = (M, g), \mathcal{N} = (N, g')$ and require the embedding $\psi : \mathcal{M} \to \mathcal{N}$ to be an isometry.
- Require that ψ preserves orientations and the causal structure (no new causal links are created by the embedding).
Locally covariant quantum field theory (LCQFT)

- In the original AQFT axioms we associate algebras to regions of a fixed spacetimes. Now we go a step further.
- Replace \mathcal{O}_1 and \mathcal{O}_2 with arbitrary spacetimes $\mathcal{M} = (M, g)$, $\mathcal{N} = (N, g')$ and require the embedding $\psi : \mathcal{M} \rightarrow \mathcal{N}$ to be an isometry.
- Require that ψ preserves orientations and the causal structure (no new causal links are created by the embedding).
- Assign to each spacetime \mathcal{M} an algebra $\mathcal{A}(\mathcal{M})$ and to each admissible embedding ψ a homomorphism of algebras $\mathcal{A}\psi$ (notion of subsystems). This has to be done covariantly.
Locally covariant fields

In the framework of LCQFT, locally covariant fields are used to identify (put labels on) observables localized in different regions of spacetime, in the absence of symmetries.
Locally covariant fields

- In the framework of LCQFT, **locally covariant fields** are used to identify (put labels on) observables localized in different region of spacetime, in the absence of symmetries.

- Let $\mathcal{D}(\mathcal{O})$ denote the space of test functions supported in \mathcal{O}. An **LC field** is a family of maps $\Phi_M : \mathcal{D}(\mathcal{M}) \to \mathcal{A}(\mathcal{M})$, labeled by spacetimes \mathcal{M} such that:

 $$\mathcal{A}\psi(\Phi_\mathcal{O}(f)) = \Phi_\mathcal{M}(\psi*f)[h].$$

$$\Phi_\mathcal{M}(\psi*f)$$

$$\Phi_\mathcal{O}(f)$$

ψ ψ^{-1}

\mathcal{M}

\mathcal{O}

$\psi*f$

$\psi(\mathcal{O})$
In the framework of LCQFT, **locally covariant fields** are used to identify (put labels on) observables localized in different region of spacetime, in the absence of symmetries.

Let $\mathcal{D}(\Theta)$ denote the space of test functions supported in Θ. An **LC field** is a family of maps $\Phi_M : \mathcal{D}(M) \rightarrow \mathcal{A}(M)$, labeled by spacetimes M such that:

$$\mathcal{A}\psi(\Phi_\Theta(f)) = \Phi_M(\psi^*f)[h].$$

This generalizes the notion of Wightman’s operator-valued distributions.
Locally covariant fields

- In the framework of LCQFT, **locally covariant fields** are used to identify (put labels on) observables localized in different region of spacetime, in the absence of symmetries.

- Let $\mathcal{D}(\theta)$ denote the space of test functions supported in θ. An **LC field** is a family of maps $\Phi_M : \mathcal{D}(\mathcal{M}) \to \mathcal{A}(\mathcal{M})$, labeled by spacetimes \mathcal{M} such that:
 $$\mathcal{A} \psi(\Phi_{\theta}(f)) = \Phi_{\mathcal{M}}(\psi \ast f)[h].$$

- This generalizes the notion of Wightman’s operator-valued distributions

- Locally covariant fields are candidates for observables in GR.
Difficulties in quantum gravity

- In contrast to QFT on curved spacetimes, in QG the spacetime structure is dynamical. Need for background independence.
Difficulties in quantum gravity

- In contrast to QFT on curved spacetimes, in QG the spacetime structure is dynamical. Need for background independence.
- "Points" lose their meaning. The theory is invariant under diffeomorphism transformations.
Difficulties in quantum gravity

- In contrast to QFT on curved spacetimes, in QG the spacetime structure is dynamical. Need for background independence.
- "Points" lose their meaning. The theory is invariant under diffeomorphism transformations.
- As a QFT, quantum gravity is power counting non-renormalizable.
Ways around some of the problems

Ways around some of the problems

- **Non-renormalizability**: use Epstein-Glaser renormalization to obtain finite results for any fixed energy scale. Think of the theory as an effective theory.
Ways around some of the problems

- **Non-renormalizability**: use Epstein-Glaser renormalization to obtain finite results for any fixed energy scale. Think of the theory as an effective theory.
- **Dynamical nature of spacetime**: make a split of the metric into background and perturbation, quantize the perturbation as a quantum field on a curved background, show background independence at the end.
Ways around some of the problems

- **Non-renormalizability**: use Epstein-Glaser renormalization to obtain finite results for any fixed energy scale. Think of the theory as an effective theory.

- **Dynamical nature of spacetime**: make a split of the metric into background and perturbation, quantize the perturbation as a quantum field on a curved background, show background independence at the end.

- **Diffeomorphism invariance**: use the BV formalism to do the gauge fixing. Possible difficulties: base manifold is Lorentzian and non-compact, symmetry group is infinite dimensional, so is the space of metrics.
Intuitive idea

- In experiment, geometric structure is probed by local observations. We have the following data:
Intuitive idea

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Some region \mathcal{O} of spacetime where the measurement is performed,

\[
\Phi(\mathcal{O}) = \int \Phi(x) R(x) \, d\mu(x).
\]

Think of the measured observable as a function of a perturbation of the fixed background metric:

\[
\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}.
\]

Diffeomorphism transformation: move our experimental setup to a different region \mathcal{O}'.
In experiment, geometric structure is probed by local observations. We have the following data:

- Some region Θ of spacetime where the measurement is performed,
- An observable Φ, which we measure,
In experiment, geometric structure is probed by local observations. We have the following data:

- Some region Θ of spacetime where the measurement is performed,
- An observable Φ, which we measure,
- We don’t measure the observable (e.g. curvature) at a point. This is modeled by smearing with a test function f. For example:

$$\Phi(f) = \int f(x)R(x)d\mu(x).$$
In experiment, geometric structure is probed by local observations. We have the following data:

- Some region Ω of spacetime where the measurement is performed,
- An observable Φ, which we measure,
- We don’t measure the observable (e.g. curvature) at a point. This is modeled by smearing with a test function f. For example:
 \[
 \Phi(f) = \int f(x) R(x) d\mu(x).
 \]

Think of the measured observable as a function of a perturbation of the fixed background metric:

\[
\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}.
\]
Intuitive idea

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Some region \(\mathcal{O} \) of spacetime where the measurement is performed,
 - An observable \(\Phi \), which we measure,
 - We don’t measure the observable (e.g. curvature) at a point. This is modeled by smearing with a test function \(f \). For example:
 \[
 \Phi(f) = \int f(x) R(x) d\mu(x).
 \]

- Think of the measured observable as a function of a perturbation of the fixed background metric:
 \[
 \tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}.
 \]

- Diffeomorphism transformation: move our experimental setup to a different region \(\mathcal{O}' \).
One of the methods to build models in LCQFT is the so called functional approach.
Building models in LCQFT

- One of the methods to build models in LCQFT is the so-called functional approach.
- The main idea is to model observables as functionals on the space $\mathcal{E}(\mathcal{M})$ of off-shell field configurations. For the effective theory of gravity $\mathcal{E}(\mathcal{M}) = \Gamma((T^*\mathcal{M}) \otimes^2)$.
One of the methods to build models in LCQFT is the so called functional approach.

The main idea is to model observables as functionals on the space $\mathcal{E}(\mathcal{M})$ of off-shell field configurations. For the effective theory of gravity $\mathcal{E}(\mathcal{M}) = \Gamma((T^*M) \otimes 2)$.

On the space $\mathfrak{F}(\mathcal{M})$ of sufficiently well behaving functionals we introduce first the classical dynamics by defining a Poisson structure.
One of the methods to build models in LCQFT is the so called functional approach.

The main idea is to model observables as functionals on the the space $\mathcal{E}(M)$ of off-shell field configurations. For the effective theory of gravity $\mathcal{E}(M) = \Gamma((T^*M) \otimes^2)$.

On the space $\mathcal{F}(M)$ of sufficiently well behaving functionals we introduce first the classical dynamics by defining a Poisson structure.

Next, we use the deformation quantization to construct the non-commutative quantum algebra.
One of the methods to build models in LCQFT is the so called functional approach.

The main idea is to model observables as functionals on the space $E(M)$ of off-shell field configurations. For the effective theory of gravity $E(M) = \Gamma((T^* M) \otimes^2)$.

On the space $F(M)$ of sufficiently well behaving functionals we introduce first the classical dynamics by defining a Poisson structure.

Next, we use the deformation quantization to construct the non-commutative quantum algebra.

We work all the time on the same set of functionals, but we equip it with different algebraic structures (i.e. Poisson bracket, non-commutative \star product).
We consider an LC field Φ as a family of maps $\Phi_M : \mathcal{D}(M) \rightarrow \mathcal{F}(M)$, where $M \equiv (M, g)$.
We consider an LC field Φ as a family of maps

$$\Phi_M : \mathcal{D}(\mathcal{M}) \to \mathcal{F}(\mathcal{M}), \text{ where } \mathcal{M} \equiv (M, g).$$

Let $\xi \in \Gamma(TM)$ be an infinitesimal diffeomorphism. It acts on $\Phi_{(M,g)}(f)$ as

$$(\rho(\xi)\Phi)_{(M,g)}(f)[h] =$$

$$\left\langle (\Phi_{(M,g)}(f))^{(1)}[h], \mathcal{L}_\xi(g + h) \right\rangle + \Phi_{(M,g)}(\mathcal{L}_\xi f)[h]$$
We consider an LC field Φ as a family of maps $\Phi_M : \mathcal{D}(M) \rightarrow \mathcal{F}(M)$, where $M \equiv (M, g)$.

Let $\xi \in \Gamma(TM)$ be an infinitesimal diffeomorphism. It acts on $\Phi_{(M,g)}(f)$ as

$$(\rho(\xi)\Phi)_{(M,g)}(f)[h] = \left\langle (\Phi_{(M,g)}(f))^{(1)}[h], \mathcal{L}_\xi(g + h) \right\rangle + \Phi_{(M,g)}(\mathcal{L}_\xi f)[h]$$

Infinitesimal diffeomorphism invariance is the condition that:

$\rho(\xi)\Phi = 0.$
We consider an LC field Φ as a family of maps $\Phi_{\mathcal{M}} : \mathcal{D}(\mathcal{M}) \to \mathcal{F}(\mathcal{M})$, where $\mathcal{M} \equiv (M, g)$.

Let $\xi \in \Gamma(TM)$ be an infinitesimal diffeomorphism. It acts on $\Phi(M, g)(f)$ as

$$
(\rho(\xi)\Phi)(M, g)(f)[h] = \left\langle (\Phi(M, g)(f))^{(1)}[h], \mathcal{L}_\xi(g + h) \right\rangle + \Phi(M, g)(\mathcal{L}_\xi f)[h]
$$

Infinitesimal diffeomorphism invariance is the condition that:

$$
\rho(\xi)\Phi = 0.
$$

Example: $\int R[g + h] f \, d\mu_{g+h}$ is diffeomorphism invariant, but $\int R[g + h] f \, d\mu_g$ is not.
We realize the choice of a coordinate system by introducing four scalar fields X^μ, which parametrize points of spacetime.
We realize the choice of a coordinate system by introducing four scalar fields X^μ, which parametrize points of spacetime.

Fix a function $f : \mathbb{R}^4 \rightarrow \mathbb{R}$, then the change of $f = X^*f$ due to the change of the coordinate system is realized through the change of scalar fields X^μ.

Relational observables
Relational observables

- We realize the choice of a coordinate system by introducing four scalar fields X^μ, which parametrize points of spacetime.
- Fix a function $f : \mathbb{R}^4 \to \mathbb{R}$, then the change of $f = X^*f$ due to the change of the coordinate system is realized through the change of scalar fields X^μ.
- For an LC field Φ we obtain a map

$$\Phi_f(h, X) = \Phi_{(M,g)}(X^*f)(h),$$
We realize the choice of a coordinate system by introducing four scalar fields X^{μ}, which parametrize points of spacetime.

Fix a function $f : \mathbb{R}^4 \rightarrow \mathbb{R}$, then the change of $f = X^*f$ due to the change of the coordinate system is realized through the change of scalar fields X^{μ}.

For an LC field Φ we obtain a map

$$\Phi_f(h, X) = \Phi(M, g)(X^*f)(h),$$

In the next step make X^{μ} dynamical either by interpreting them as 4 dust fields (Brown-Kuchař model) or by constructing them locally from the metric and its derivatives.
Relational observables

- We realize the choice of a coordinate system by introducing four scalar fields X^μ, which parametrize points of spacetime.
- Fix a function $f : \mathbb{R}^4 \to \mathbb{R}$, then the change of $f = X^*f$ due to the change of the coordinate system is realized through the change of scalar fields X^μ.
- For an LC field Φ we obtain a map
 \[
 \Phi_f(h, X) = \Phi(M, g)(X^*f)(h),
 \]
- In the next step make X^μ dynamical either by interpreting them as 4 dust fields (Brown-Kuchař model) or by constructing them locally from the metric and its derivatives.
- Denote such metric dependent coordinates by X^μ_{g+h}.
Relational observables

- We realize the choice of a coordinate system by introducing four scalar fields X^μ, which parametrize points of spacetime.
- Fix a function $f : \mathbb{R}^4 \rightarrow \mathbb{R}$, then the change of $f = X^*f$ due to the change of the coordinate system is realized through the change of scalar fields X^μ.
- For an LC field Φ we obtain a map
 \[
 \Phi_f(h, X) = \Phi(M, g)(X^*f)(h),
 \]
- In the next step make X^μ dynamical either by interpreting them as 4 dust fields (Brown-Kuchař model) or by constructing them locally from the metric and its derivatives.
- Denote such metric dependent coordinates by $X_g^\mu + h$.
- Each Φ_f induces a relational observable $g \mapsto \Phi_f(h, X_{g+h})$.

Kasia Rejzner
Let \mathcal{N}_+ and \mathcal{N}_- be two spacetimes that embed into two other spacetimes \mathcal{M}_1 and \mathcal{M}_2 around Cauchy surfaces, via admissible embeddings $\chi_{k,\pm}, k = 1, 2$.

$\begin{align*}
\beta &= A\chi_1 + \circ (A\chi_2 + \circ (A\chi_1 - \circ (A\chi_2 - \circ (A\chi_1 - \circ (A\chi_2))))) \\
\text{This is the consequence of the Time-slice axiom of LCQFT.}
\end{align*}$
Let \mathcal{N}_+ and \mathcal{N}_- be two spacetimes that embed into two other spacetimes \mathcal{M}_1 and \mathcal{M}_2 around Cauchy surfaces, via admissible embeddings $\chi_{k,\pm}, k = 1, 2$.

Then
\[
\beta = \mathcal{A}\chi_{1+} \circ (\mathcal{A}\chi_{2+})^{-1} \circ \mathcal{A}\chi_{2-} \circ (\mathcal{A}\chi_{1-})^{-1}
\]
is an automorphism of $\mathcal{A}(\mathcal{M}_1)$. This is the consequence of the Time-slice axiom of LCQFT.
Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where g_1 and g_2 differ by a (compactly supported) symmetric tensor h (see the diagram).
Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where g_1 and g_2 differ by a (compactly supported) symmetric tensor h (see the diagram).

Define $\Theta_{\mu\nu}(x) \equiv \left. \frac{\delta \beta_h}{\delta h_{\mu\nu}(x)} \right|_{h=0}$.

The infinitesimal background independence is the condition $\Theta_{\mu\nu}(x) = 0$. We have proven that this condition is fulfilled as a consequence of quantized Einstein's equations.
Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where g_1 and g_2 differ by a (compactly supported) symmetric tensor h (see the diagram).

Define $\Theta_{\mu\nu}(x) \equiv \frac{\delta \beta_h}{\delta h_{\mu\nu}(x)} \bigg|_{h=0}$.

The infinitesimal background independence is the condition $\Theta_{\mu\nu} = 0$.

We have proven that this condition is fulfilled as a consequence of quantized Einstein's equations.
Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where g_1 and g_2 differ by a (compactly supported) symmetric tensor h (see the diagram).

Define $\Theta_{\mu\nu}(x) = \frac{\delta \beta_h}{\delta h_{\mu\nu}(x)} \bigg|_{h=0}^\prime$.

The infinitesimal background independence is the condition $\Theta_{\mu\nu} = 0$.

We have proven that this condition is fulfilled as a consequence of quantized Einstein’s equations.
AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.
Results

- AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.
- In our framework, physical **diffeomorphism invariant quantities** can be viewed in 3 ways:
AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.

In our framework, physical \textit{diffeomorphism invariant quantities} can be viewed in 3 ways:

- as locally covariant fields $\Phi_M : \mathcal{D}(M) \to \mathcal{F}(M)$,
Results

- AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.
- In our framework, physical \textit{diffeomorphism invariant quantities} can be viewed in 3 ways:
 - as locally covariant fields \(\Phi_\mathcal{M} : \mathcal{D}(\mathcal{M}) \to \mathcal{F}(\mathcal{M}) \),
 - as covariant functionals \(\Phi_f(g, X) \),
Results

- AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.
- In our framework, physical \textit{diffeomorphism invariant quantities} can be viewed in 3 ways:
 - as locally covariant fields $\Phi_M : \mathcal{D}(\mathcal{M}) \rightarrow \mathcal{F}(\mathcal{M})$,
 - as covariant functionals $\Phi_f(g, X)$,
 - as relational observables $\Phi_f(., X_g)$.
AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.

In our framework, physical \textit{diffeomorphism invariant quantities} can be viewed in 3 ways:

- as locally covariant fields $\Phi_M : \mathcal{D}(\mathcal{M}) \to \mathcal{F}(\mathcal{M})$,
- as covariant functionals $\Phi_f(g, X)$,
- as relational observables $\Phi_f(., X_g)$.

To quantize the theory, we make a tentative split into a free and interacting part. We quantize the free theory first and then use the \textit{Epstein-Glaser renormalization} to introduce the interaction.
AQFT is a convenient framework to solve conceptual problems of QFT on curved spacetimes. It also allows to formulate the theory of effective QG.

In our framework, physical \textbf{diffeomorphism invariant quantities} can be viewed in 3 ways:

- as locally covariant fields $\Phi_M : \mathcal{D}(M) \to \mathcal{F}(M)$,
- as covariant functionals $\Phi_f(g, X)$,
- as relational observables $\Phi_f(., X_g)$.

To quantize the theory, we make a tentative split into a free and interacting part. We quantize the free theory first and then use the \textbf{Epstein-Glaser renormalization} to introduce the interaction.

We have shown that our theory is \textbf{background independent}, i.e. independent of the split into free and interacting part.
Thank you for your attention!