

The Classical and the Quantum Master Equation in Locally Covariant Field Theory

Katarzyna Rejzner

II. Institute for Theoretical Physics, Hamburg University

Lepzig, 18.11.2011

Outline of the talk

Local covariance

- Kinematical structure
- Equations of motion and symmetries
- Antibracket and the CME

2 Quantization

- pAQFT
- QME and the quantum BV operator
- Renormalized time-ordered products

This talk is based on:

• K. Fredenhagen, K. R., Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory, [arXiv:math-ph/1110.5232],

This talk is based on:

- K. Fredenhagen, K. R., Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory, [arXiv:math-ph/1110.5232],
- K. Fredenhagen, K. R., Batalin-Vilkovisky formalism in the functional approach to classical field theory, [arXiv:math-ph/1101.5112].

This talk is based on:

- K. Fredenhagen, K. R., Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory, [arXiv:math-ph/1110.5232],
- K. Fredenhagen, K. R., Batalin-Vilkovisky formalism in the functional approach to classical field theory, [arXiv:math-ph/1101.5112].
- K. R., *Batalin-Vilkovisky formalism in locally covariant field theory*, Ph.D. thesis.

• A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].

- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.

- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.
- To formulate a theory in this framework we need some notions from the category theory.

- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.
- To formulate a theory in this framework we need some notions from the category theory.
- In this talk I will use the following categories:

- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.
- To formulate a theory in this framework we need some notions from the category theory.
- In this talk I will use the following categories:

- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.
- To formulate a theory in this framework we need some notions from the category theory.
- In this talk I will use the following categories:
 - **Loc** Obj(Loc): all four-dimensional, globally hyperbolic oriented and time-oriented spacetimes (M, g).

- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.
- To formulate a theory in this framework we need some notions from the category theory.
- In this talk I will use the following categories:
 - LocObj(Loc): all four-dimensional, globally hyperbolic oriented and
time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that preserve orientation,
time-orientation and the causal structure of the embedded
spacetime.

- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.
- To formulate a theory in this framework we need some notions from the category theory.
- In this talk I will use the following categories:
 - LocObj(Loc): all four-dimensional, globally hyperbolic oriented and
time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that preserve orientation,
time-orientation and the causal structure of the embedded
spacetime.

- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.
- To formulate a theory in this framework we need some notions from the category theory.
- In this talk I will use the following categories:
 - LocObj(Loc): all four-dimensional, globally hyperbolic oriented and
time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that preserve orientation,
time-orientation and the causal structure of the embedded
spacetime.
 - **Vec** Obj(**Vec**): (small) topological vector spaces

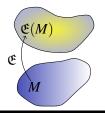
- A convenient framework to address the issue of *diffeomorphism invariance* is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].
- It was successful as a general paradigm for QFT on curved spacetimes.
- To formulate a theory in this framework we need some notions from the category theory.
- In this talk I will use the following categories:
 - LocObj(Loc): all four-dimensional, globally hyperbolic oriented and
time-oriented spacetimes (M, g).Morphisms: Isometric embeddings that preserve orientation,
time-orientation and the causal structure of the embedded
spacetime.
 - Vec Obj(Vec): (small) topological vector spaces Morphisms: morphisms of topological vector spaces

Kinematical structure Equations of motion and symmetries Antibracket and the CME

Kinematical structure

In our formulation, with a physical system we associate:

The configurations space 𝔅(M) of all fields of the theory. 𝔅 is a contravariant functor from Loc (spacetimes) to Vec (lcvs). For the scalar field 𝔅(M) = 𝔅[∞](M).

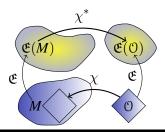


Kinematical structure Equations of motion and symmetries Antibracket and the CME

Kinematical structure

In our formulation, with a physical system we associate:

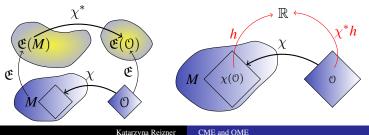
• The configurations space $\mathfrak{E}(M)$ of all fields of the theory. \mathfrak{E} is a contravariant functor from Loc (spacetimes) to Vec (lcvs). For the scalar field $\mathfrak{E}(M) = \mathfrak{C}^{\infty}(M)$.



Kinematical structure

In our formulation, with a physical system we associate:

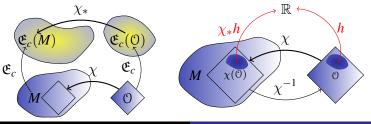
• The configurations space $\mathfrak{E}(M)$ of all fields of the theory. \mathfrak{E} is a contravariant functor from Loc (spacetimes) to Vec (lcvs). For the scalar field $\mathfrak{E}(M) = \mathfrak{C}^{\infty}(M)$.



Kinematical structure

In our formulation, with a physical system we associate:

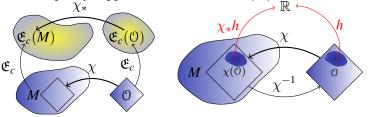
- The configurations space 𝔅(M) of all fields of the theory. 𝔅 is a contravariant functor from Loc (spacetimes) to Vec (lcvs). For the scalar field 𝔅(M) = 𝔅[∞](M).
- The space of compactly supported fields $\mathfrak{E}_c(M)$. \mathfrak{E}_c is a covariant functor from **Loc** to **Vec**.



Kinematical structure

In our formulation, with a physical system we associate:

- The configurations space 𝔅(M) of all fields of the theory. 𝔅 is a contravariant functor from Loc (spacetimes) to Vec (lcvs). For the scalar field 𝔅(M) = 𝔅[∞](M).
- The space of compactly supported fields $\mathfrak{E}_c(M)$. \mathfrak{E}_c is a covariant functor from **Loc** to **Vec**.
- D: Loc → Vec a covariant functor that assigns to *M* the space of compactly supported test functions D(*M*).



Local covariance Quantization Kinematical structure Equations of motion and syr Antibracket and the CME

Functionals

• Observables of the theory are described by functionals on $\mathfrak{E}(M)$, i.e. a measurement of an observable assigns a number to a field configuration of the system.

Local covariance Quantization Antibracket and the CME

Functionals

- Observables of the theory are described by functionals on $\mathfrak{E}(M)$, i.e. a measurement of an observable assigns a number to a field configuration of the system.
- Let C[∞](𝔅(M)) denote the space of smooth (in the sense of calculus on lcvs) maps from the configuration space to ℝ.

- Observables of the theory are described by functionals on $\mathfrak{E}(M)$, i.e. a measurement of an observable assigns a number to a field configuration of the system.
- Let C[∞](𝔅(M)) denote the space of smooth (in the sense of calculus on lcvs) maps from the configuration space to ℝ.
- The spacetime support of a function $F \in \mathcal{C}^{\infty}(\mathfrak{E}(M))$ is defined:

supp $F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists \varphi, \psi \in \mathfrak{E}(M),$ supp $\psi \subset U$ such that $F(\varphi + \psi) \neq F(\varphi)\}$.

- Observables of the theory are described by functionals on $\mathfrak{E}(M)$, i.e. a measurement of an observable assigns a number to a field configuration of the system.
- Let C[∞](𝔅(M)) denote the space of smooth (in the sense of calculus on lcvs) maps from the configuration space to ℝ.
- The spacetime support of a function $F \in C^{\infty}(\mathfrak{E}(M))$ is defined:

 $\begin{aligned} \sup F &= \{ x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists \varphi, \psi \in \mathfrak{E}(M), \\ \sup \psi \subset U \text{ such that } F(\varphi + \psi) \neq F(\varphi) \}. \end{aligned}$

• *F* is additive if $\forall \varphi_1, \varphi_2, \varphi_3 \in \mathfrak{E}(M)$ s.t. $\operatorname{supp}\varphi_1 \cap \operatorname{supp}\varphi_3 = \varnothing$: $F(\varphi_1 + \varphi_2 + \varphi_3) = F(\varphi_1 + \varphi_2) - F(\varphi_2) + F(\varphi_2 + \varphi_3)$.

- Observables of the theory are described by functionals on $\mathfrak{E}(M)$, i.e. a measurement of an observable assigns a number to a field configuration of the system.
- Let C[∞](𝔅(M)) denote the space of smooth (in the sense of calculus on lcvs) maps from the configuration space to ℝ.
- The spacetime support of a function $F \in \mathcal{C}^{\infty}(\mathfrak{E}(M))$ is defined:

 $\begin{aligned} \sup F &= \{ x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists \varphi, \psi \in \mathfrak{E}(M), \\ \sup \psi \subset U \text{ such that } F(\varphi + \psi) \neq F(\varphi) \}. \end{aligned}$

F is additive if ∀φ₁, φ₂, φ₃ ∈ 𝔅(*M*) s.t. suppφ₁ ∩ suppφ₃ = Ø: *F*(φ₁ + φ₂ + φ₃) = *F*(φ₁ + φ₂) − *F*(φ₂) + *F*(φ₂ + φ₃). *F* is local if it is of the form: *F*(φ) = ∫_M *f*(*j_x*(φ)) *d*µ(*x*),

1

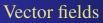
- Observables of the theory are described by functionals on $\mathfrak{E}(M)$, i.e. a measurement of an observable assigns a number to a field configuration of the system.
- Let C[∞](𝔅(M)) denote the space of smooth (in the sense of calculus on lcvs) maps from the configuration space to ℝ.
- The spacetime support of a function $F \in \mathcal{C}^{\infty}(\mathfrak{E}(M))$ is defined:

 $\begin{aligned} \sup F &= \{ x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists \varphi, \psi \in \mathfrak{E}(M), \\ \sup \psi \subset U \text{ such that } F(\varphi + \psi) \neq F(\varphi) \}. \end{aligned}$

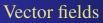
• *F* is additive if $\forall \varphi_1, \varphi_2, \varphi_3 \in \mathfrak{E}(M)$ s.t. $\operatorname{supp} \varphi_1 \cap \operatorname{supp} \varphi_3 = \varnothing$:

$$F(\varphi_1 + \varphi_2 + \varphi_3) = F(\varphi_1 + \varphi_2) - F(\varphi_2) + F(\varphi_2 + \varphi_3).$$

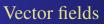
- *F* is local if it is of the form: $F(\varphi) = \int_{M} f(j_x(\varphi)) d\mu(x)$,
- In this talk we restrict ourselves to products of local functionals, we denote this space by $\mathfrak{F}(M)$.



• Vector fields X on $\mathfrak{E}(M)$ (trivial infinite dimensional manifold) can be considered as maps from $\mathfrak{E}(M)$ to $\mathfrak{E}(M)$.



- Vector fields X on $\mathfrak{E}(M)$ (trivial infinite dimensional manifold) can be considered as maps from $\mathfrak{E}(M)$ to $\mathfrak{E}(M)$.
- We restrict ourselves to smooth maps X with image in 𝔅_c(M). They act on 𝔅(M) as derivations: ∂_XF(φ) := ⟨F⁽¹⁾(φ), X(φ)⟩



- Vector fields X on $\mathfrak{E}(M)$ (trivial infinite dimensional manifold) can be considered as maps from $\mathfrak{E}(M)$ to $\mathfrak{E}(M)$.
- We restrict ourselves to smooth maps X with image in $\mathfrak{E}_c(M)$. They act on $\mathfrak{F}(M)$ as derivations: $\partial_X F(\varphi) := \langle F^{(1)}(\varphi), X(\varphi) \rangle$
- We consider only the multilocal (products of local vector fields and multilocal functionals) vector fields with compact support.

- Vector fields X on $\mathfrak{E}(M)$ (trivial infinite dimensional manifold) can be considered as maps from $\mathfrak{E}(M)$ to $\mathfrak{E}(M)$.
- We restrict ourselves to smooth maps X with image in $\mathfrak{E}_c(M)$. They act on $\mathfrak{F}(M)$ as derivations: $\partial_X F(\varphi) := \langle F^{(1)}(\varphi), X(\varphi) \rangle$
- We consider only the multilocal (products of local vector fields and multilocal functionals) vector fields with compact support.
- The space of vector fields with above properties is denoted by $\mathfrak{V}(M)$. \mathfrak{V} becomes a (covariant) functor by setting: $\mathfrak{V}\chi(X) = \mathfrak{E}_c\chi \circ X \circ \mathfrak{E}\chi$,

• The dynamics is introduced by a generalized Lagrangian *L* which is a natural transformation between functors \mathfrak{D} and \mathfrak{F}_{loc} , s.t.:

- The dynamics is introduced by a generalized Lagrangian *L* which is a natural transformation between functors \mathfrak{D} and \mathfrak{F}_{loc} , s.t.:
 - $\operatorname{supp}(L_M(f)) \subseteq \operatorname{supp}(f)$,

- The dynamics is introduced by a generalized Lagrangian *L* which is a natural transformation between functors \mathfrak{D} and \mathfrak{F}_{loc} , s.t.:
 - $\operatorname{supp}(L_M(f)) \subseteq \operatorname{supp}(f)$,
 - $L_M(\bullet)$ is additive in f.

- The dynamics is introduced by a generalized Lagrangian L which is a natural transformation between functors \mathfrak{D} and \mathfrak{F}_{loc} , s.t.:
 - $\operatorname{supp}(L_M(f)) \subseteq \operatorname{supp}(f)$,
 - $L_M(\bullet)$ is additive in f.
- The action S(L) is an equivalence class of Lagrangians. We say that $L_1 \sim L_2$ if $\forall f \in \mathfrak{D}(M), M \in \text{Obj}(\text{Loc})$:

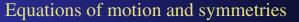
$$\operatorname{supp}(L_{1,M}-L_{2,M})(f)\subset \operatorname{supp} df.$$

Dynamics

- The dynamics is introduced by a generalized Lagrangian L which is a natural transformation between functors \mathfrak{D} and \mathfrak{F}_{loc} , s.t.:
 - $\operatorname{supp}(L_M(f)) \subseteq \operatorname{supp}(f)$,
 - $L_M(\bullet)$ is additive in f.
- The action S(L) is an equivalence class of Lagrangians. We say that $L_1 \sim L_2$ if $\forall f \in \mathfrak{D}(M), M \in \text{Obj}(\text{Loc})$:

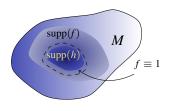
$$\operatorname{supp}(L_{1,M}-L_{2,M})(f)\subset \operatorname{supp} df.$$

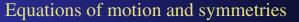
• For example:
$$L_M(f) = \int_M \left(\frac{1}{2}\varphi^2 + \frac{1}{2}\nabla_\mu \varphi \nabla^\mu \varphi\right) f \operatorname{dvol}_M.$$



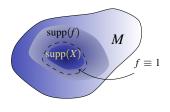
• The Euler-Lagrange derivative of *S* is defined by:

 $\langle S'_M(\varphi),h\rangle = \langle L_M(f)^{(1)}(\varphi),h\rangle, f \equiv 1 \text{ on supp}h.$ The field equation is: $S'_M(\varphi) = 0$. The space of solutions is denoted by $\mathfrak{E}_S(M) \subset \mathfrak{E}(M)$.

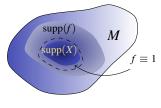




- The Euler-Lagrange derivative of *S* is defined by: $\langle S'_M(\varphi), h \rangle = \langle L_M(f)^{(1)}(\varphi), h \rangle, f \equiv 1 \text{ on supp}h.$ The field equation is: $S'_M(\varphi) = 0$. The space of solutions is denoted by $\mathfrak{E}_S(M) \subset \mathfrak{E}(M)$.
- $X \in \mathfrak{V}(M)$ is called a symmetry of the action *S* if $\forall \varphi \in \mathfrak{E}(M)$: $0 = \langle S'_M(\varphi), X(\varphi) \rangle = \partial_X(S_M)(\varphi).$



- The Euler-Lagrange derivative of *S* is defined by: $\langle S'_M(\varphi), h \rangle = \langle L_M(f)^{(1)}(\varphi), h \rangle, f \equiv 1 \text{ on supp}h.$ The field equation is: $S'_M(\varphi) = 0$. The space of solutions is denoted by $\mathfrak{E}_S(M) \subset \mathfrak{E}(M)$.
- $X \in \mathfrak{V}(M)$ is called a symmetry of the action *S* if $\forall \varphi \in \mathfrak{E}(M)$: $0 = \langle S'_M(\varphi), X(\varphi) \rangle = \partial_X(S_M)(\varphi).$
- In other words: a symmetry is a direction in 𝔅(M) in which the action is constant. We denote the space of symmetries by 𝔅(M).



• We can define the space of on-shell functionals $\mathfrak{F}_S(M)$ as the quotient $\mathfrak{F}_S(M) = \mathfrak{F}(M)/\mathfrak{F}_0(M)$, where $\mathfrak{F}_0(M)$ is the ideal "generated by equations of motion" in the following sense: $\forall F \in \mathfrak{F}_0(M) \exists X \in \mathfrak{V}(M)$ such that $F = \langle S'_M, X \rangle =: \delta_S(X)$.

- We can define the space of on-shell frictionals $\mathfrak{F}_{S}(M)$ as the quotient $\mathfrak{F}_{S}(M) = \mathfrak{F}(M)/\mathfrak{F}_{0}(M)$, where $\mathfrak{F}_{0}(M)$ is the ideal "generated by equations of motion" in the following sense: $\forall F \in \mathfrak{F}_{0}(M) \exists X \in \mathfrak{V}(M)$ such that $F = \langle S'_{M}, X \rangle =: \delta_{S}(X)$.
- δ_S is called the Koszul map. Symmetries constitute its kernel.

- We can define the space of on-shell frictionals $\mathfrak{F}_{S}(M)$ as the quotient $\mathfrak{F}_{S}(M) = \mathfrak{F}(M)/\mathfrak{F}_{0}(M)$, where $\mathfrak{F}_{0}(M)$ is the ideal "generated by equations of motion" in the following sense: $\forall F \in \mathfrak{F}_{0}(M) \exists X \in \mathfrak{V}(M)$ such that $F = \langle S'_{M}, X \rangle =: \delta_{S}(X)$.
- δ_S is called the Koszul map. Symmetries constitute its kernel.
- We obtain a sequence: $0 \to \mathfrak{s}(M) \hookrightarrow \mathfrak{V}(M) \xrightarrow{\delta_S} \mathfrak{F}(M) \to 0.$

- We can define the space of on-shell frictionals $\mathfrak{F}_{S}(M)$ as the quotient $\mathfrak{F}_{S}(M) = \mathfrak{F}(M)/\mathfrak{F}_{0}(M)$, where $\mathfrak{F}_{0}(M)$ is the ideal "generated by equations of motion" in the following sense: $\forall F \in \mathfrak{F}_{0}(M) \exists X \in \mathfrak{V}(M)$ such that $F = \langle S'_{M}, X \rangle =: \delta_{S}(X)$.
- δ_S is called the Koszul map. Symmetries constitute its kernel.
- We obtain a sequence: $0 \to \mathfrak{s}(M) \hookrightarrow \mathfrak{V}(M) \xrightarrow{\delta_S} \mathfrak{F}(M) \to 0.$
- The differential δ = ι ⊕ δ_S ⊕ 0 is called the Koszul-Tate differential. On-shell functionals are described by its 0-homology: 𝔅_S(M) = H₀(δ).

- We can define the space of on-shell frictionals $\mathfrak{F}_{S}(M)$ as the quotient $\mathfrak{F}_{S}(M) = \mathfrak{F}(M)/\mathfrak{F}_{0}(M)$, where $\mathfrak{F}_{0}(M)$ is the ideal "generated by equations of motion" in the following sense: $\forall F \in \mathfrak{F}_{0}(M) \exists X \in \mathfrak{V}(M)$ such that $F = \langle S'_{M}, X \rangle =: \delta_{S}(X)$.
- δ_S is called the Koszul map. Symmetries constitute its kernel.
- We obtain a sequence: $0 \to \mathfrak{s}(M) \hookrightarrow \mathfrak{V}(M) \xrightarrow{\delta_S} \mathfrak{F}(M) \to 0.$
- The differential δ = ι ⊕ δ_S ⊕ 0 is called the Koszul-Tate differential. On-shell functionals are described by its 0-homology: 𝔅_S(M) = H₀(δ).
- From this we obtain the graded differential algebra, which is a resolution of $\mathfrak{F}_{S}(M)$, by taking graded symmetric tensor powers of the module $\mathfrak{s}(M) \oplus \mathfrak{V}(M) \oplus \mathfrak{F}(M)$. We arrive at: $\mathfrak{KT}(M) \doteq \left(S_{\mathfrak{F}}^{\bullet}\mathfrak{s}(M) \otimes_{\mathfrak{F}} \bigwedge_{\mathfrak{T}} \mathfrak{V}(M), \delta\right).$

- We can define the space of on-shell frictionals $\mathfrak{F}_{S}(M)$ as the quotient $\mathfrak{F}_{S}(M) = \mathfrak{F}(M)/\mathfrak{F}_{0}(M)$, where $\mathfrak{F}_{0}(M)$ is the ideal "generated by equations of motion" in the following sense: $\forall F \in \mathfrak{F}_{0}(M) \exists X \in \mathfrak{V}(M)$ such that $F = \langle S'_{M}, X \rangle =: \delta_{S}(X)$.
- δ_S is called the Koszul map. Symmetries constitute its kernel.
- We obtain a sequence: $0 \to \mathfrak{s}(M) \hookrightarrow \mathfrak{V}(M) \xrightarrow{\delta_S} \mathfrak{F}(M) \to 0.$
- The differential δ = ι ⊕ δ_S ⊕ 0 is called the Koszul-Tate differential. On-shell functionals are described by its 0-homology: 𝔅_S(M) = H₀(δ).
- From this we obtain the graded differential algebra, which is a resolution of $\mathfrak{F}_{S}(M)$, by taking graded symmetric tensor powers of the module $\mathfrak{s}(M) \oplus \mathfrak{V}(M) \oplus \mathfrak{F}(M)$. We arrive at: $\mathfrak{KT}(M) \doteq \left(S_{\mathfrak{F}}^{\bullet}\mathfrak{s}(M) \otimes_{\mathfrak{F}} \bigwedge_{\mathfrak{T}} \mathfrak{V}(M), \delta\right).$
- It is called the Koszul-Tate resolution.

Local covariance Quantization Kinematical structure Equations of motion and symmetries Antibracket and the CME

• The space of symmetries $\mathfrak{s}(M)$ is a Lie subalgebra of $\mathfrak{V}(M)$ and has a natural action (as a Lie algebroid) on $\mathfrak{F}(M)$.

Invariants

- The space of symmetries $\mathfrak{s}(M)$ is a Lie subalgebra of $\mathfrak{V}(M)$ and has a natural action (as a Lie algebroid) on $\mathfrak{F}(M)$.
- It also acts on the space $\mathfrak{F}_S(M)$ of on-shell functionals, but this action is not faithfull.

- The space of symmetries $\mathfrak{s}(M)$ is a Lie subalgebra of $\mathfrak{V}(M)$ and has a natural action (as a Lie algebroid) on $\mathfrak{F}(M)$.
- It also acts on the space $\mathfrak{F}_S(M)$ of on-shell functionals, but this action is not faithfull.
- In physics we are interested in the space of on-shell functionals, invariant under the action of s(M). We denote this space by
 ^{sinv}_S(M) and call it gauge invariant on-shell functionals.

- The space of symmetries $\mathfrak{s}(M)$ is a Lie subalgebra of $\mathfrak{V}(M)$ and has a natural action (as a Lie algebroid) on $\mathfrak{F}(M)$.
- It also acts on the space $\mathfrak{F}_S(M)$ of on-shell functionals, but this action is not faithfull.
- In physics we are interested in the space of on-shell functionals, invariant under the action of s(M). We denote this space by
 ^{inv} (M) and call it gauge invariant on-shell functionals.
- It can be easily characterized with the Chevalley-Eilenberg complex (𝔅𝔅_S(M) ≐ Λ_s s^{*}(M)⊗_s 𝔅_S(M), γ).

- The space of symmetries $\mathfrak{s}(M)$ is a Lie subalgebra of $\mathfrak{V}(M)$ and has a natural action (as a Lie algebroid) on $\mathfrak{F}(M)$.
- It also acts on the space $\mathfrak{F}_S(M)$ of on-shell functionals, but this action is not faithfull.
- In physics we are interested in the space of on-shell functionals, invariant under the action of s(M). We denote this space by
 ^{inv} (M) and call it gauge invariant on-shell functionals.
- It can be easily characterized with the Chevalley-Eilenberg complex $(\mathfrak{CC}_{\mathcal{S}}(M) \doteq \bigwedge_{\mathfrak{F}} \mathfrak{s}^*(M) \otimes_{\mathfrak{F}} \mathfrak{F}_{\mathcal{S}}(M), \gamma).$
- $\mathfrak{s}^*(M)$ is defined as $\mathfrak{C}^{\infty}(\mathfrak{E}(M), \mathfrak{E}'(M))/I$, where $I \subset \mathfrak{C}^{\infty}(\mathfrak{E}(M), \mathfrak{E}'(M))$ is the ideal of forms vanishing on $\mathfrak{s}(M)$.

- The space of symmetries $\mathfrak{s}(M)$ is a Lie subalgebra of $\mathfrak{V}(M)$ and has a natural action (as a Lie algebroid) on $\mathfrak{F}(M)$.
- It also acts on the space $\mathfrak{F}_S(M)$ of on-shell functionals, but this action is not faithfull.
- In physics we are interested in the space of on-shell functionals, invariant under the action of s(M). We denote this space by
 ^{inv} (M) and call it gauge invariant on-shell functionals.
- It can be easily characterized with the Chevalley-Eilenberg complex $(\mathfrak{CC}_{\mathcal{S}}(M) \doteq \bigwedge_{\mathfrak{F}} \mathfrak{s}^*(M) \otimes_{\mathfrak{F}} \mathfrak{F}_{\mathcal{S}}(M), \gamma).$
- $\mathfrak{s}^*(M)$ is defined as $\mathfrak{C}^{\infty}(\mathfrak{E}(M), \mathfrak{E}'(M))/I$, where $I \subset \mathfrak{C}^{\infty}(\mathfrak{E}(M), \mathfrak{E}'(M))$ is the ideal of forms vanishing on $\mathfrak{s}(M)$.
- In degree 0, γ acts as: $(\gamma F)(\xi) \doteq \partial_{\xi} F, \xi \in \mathfrak{s}(M), F \in \mathfrak{F}_{S}(M).$

- The space of symmetries $\mathfrak{s}(M)$ is a Lie subalgebra of $\mathfrak{V}(M)$ and has a natural action (as a Lie algebroid) on $\mathfrak{F}(M)$.
- It also acts on the space $\mathfrak{F}_S(M)$ of on-shell functionals, but this action is not faithfull.
- In physics we are interested in the space of on-shell functionals, invariant under the action of s(M). We denote this space by
 ^{inv} (M) and call it gauge invariant on-shell functionals.
- It can be easily characterized with the Chevalley-Eilenberg complex (𝔅𝔅_S(M) ≐ Λ_s s^{*}(M)⊗_s 𝔅_S(M), γ).
- $\mathfrak{s}^*(M)$ is defined as $\mathfrak{C}^{\infty}(\mathfrak{E}(M), \mathfrak{E}'(M))/I$, where $I \subset \mathfrak{C}^{\infty}(\mathfrak{E}(M), \mathfrak{E}'(M))$ is the ideal of forms vanishing on $\mathfrak{s}(M)$.
- In degree 0, γ acts as: $(\gamma F)(\xi) \doteq \partial_{\xi} F, \xi \in \mathfrak{s}(M), F \in \mathfrak{F}_{S}(M)$.
- If F ∈ 𝔅^{inv}_S(M) then γF ≡ 0, so the H⁰(γ) characterizes the gauge invariant on-shell functionals.

BV complex

• In physics it is sometimes convenient to go off-shell. Therefore we replace $\mathfrak{F}_{\mathcal{S}}(M)$ by its resolution $\mathfrak{KT}(M)$ in the definition of the Chevalley-Eilenberg complex.

$$\mathfrak{CE}_{S}(M) \doteq \bigwedge_{\mathfrak{F}} \mathfrak{s}^{*}(M) \otimes_{\mathfrak{F}} \mathfrak{F}_{S}(M)$$

BV complex

• In physics it is sometimes convenient to go off-shell. Therefore we replace $\mathfrak{F}_{\mathcal{S}}(M)$ by its resolution $\mathfrak{KT}(M)$ in the definition of the Chevalley-Eilenberg complex.

$$\mathfrak{BV}(M) \doteq igwedge_{\mathfrak{F}} \mathfrak{s}^*(M) \otimes_{\mathfrak{F}} S^ullet_{\mathfrak{F}} \mathfrak{s}(M) \otimes_{\mathfrak{F}} igwedge_{\mathfrak{F}} \mathfrak{V}(M)$$

Local covariance Quantization Equations of motion and symmetries Antibracket and the CME

BV complex

• In physics it is sometimes convenient to go off-shell. Therefore we replace $\mathfrak{F}_{S}(M)$ by its resolution $\mathfrak{KT}(M)$ in the definition of the Chevalley-Eilenberg complex.

$$\mathfrak{BV}(M) \doteq \bigwedge_{\mathfrak{s}} \mathfrak{s}^*(M) \otimes_{\mathfrak{F}} S^{\bullet}_{\mathfrak{F}} \mathfrak{s}(M) \otimes_{\mathfrak{F}} \bigwedge_{\mathfrak{s}} \mathfrak{V}(M)$$

• We obtain the graded algebra $\mathfrak{BV}(M)$ with a differential δ , which acts on $\bigwedge_{\mathfrak{F}} \mathfrak{s}(M)^*$ as the identity and the differential γ is in a natural way extended to the full algebra $\mathfrak{BV}(M)$. Their sum is the BV differential $s = \delta + \gamma$. Local covariance Quantization Equations of motion and symmetries Antibracket and the CME

BV complex

• In physics it is sometimes convenient to go off-shell. Therefore we replace $\mathfrak{F}_{\mathcal{S}}(M)$ by its resolution $\mathfrak{KT}(M)$ in the definition of the Chevalley-Eilenberg complex.

$$\mathfrak{BV}(M) \doteq \bigwedge_{\mathfrak{s}} \mathfrak{s}^*(M) \otimes_{\mathfrak{F}} S^{ullet}_{\mathfrak{F}} \mathfrak{s}(M) \otimes_{\mathfrak{F}} \bigwedge_{\mathfrak{s}} \mathfrak{V}(M)$$

- We obtain the graded algebra $\mathfrak{BV}(M)$ with a differential δ , which acts on $\bigwedge_{\mathfrak{F}} \mathfrak{s}(M)^*$ as the identity and the differential γ is in a natural way extended to the full algebra $\mathfrak{BV}(M)$. Their sum is the BV differential $s = \delta + \gamma$.
- The Chevalley-Eilenberg differential γ acts on $H_0(\delta) = \bigwedge_{\mathfrak{F}} \mathfrak{s}(M)^* \otimes_{\mathfrak{F}} \mathfrak{F}_S(M)$ and we have:

$$H^0(H_0(\delta),\gamma) = \mathfrak{F}^{\text{inv}}_S(M)$$
.

Local covariance Quantization Equations of motion and symmetries Antibracket and the CME

BV complex

• In physics it is sometimes convenient to go off-shell. Therefore we replace $\mathfrak{F}_{\mathcal{S}}(M)$ by its resolution $\mathfrak{KT}(M)$ in the definition of the Chevalley-Eilenberg complex.

$$\mathfrak{BV}(M) \doteq \bigwedge_{\mathfrak{s}} \mathfrak{s}^*(M) \otimes_{\mathfrak{F}} S^{ullet}_{\mathfrak{F}} \mathfrak{s}(M) \otimes_{\mathfrak{F}} \bigwedge_{\mathfrak{s}} \mathfrak{V}(M)$$

- We obtain the graded algebra $\mathfrak{BV}(M)$ with a differential δ , which acts on $\bigwedge_{\mathfrak{F}} \mathfrak{s}(M)^*$ as the identity and the differential γ is in a natural way extended to the full algebra $\mathfrak{BV}(M)$. Their sum is the BV differential $s = \delta + \gamma$.
- The Chevalley-Eilenberg differential γ acts on $H_0(\delta) = \bigwedge_{\mathfrak{F}} \mathfrak{s}(M)^* \otimes_{\mathfrak{F}} \mathfrak{F}_S(M)$ and we have:

$$H^0(H_0(\delta),\gamma) = \mathfrak{F}^{\mathrm{inv}}_S(M)$$
.

• Moreover it holds: $H^0(H_0(\delta), \gamma) = H^0(s)$.

Local covariance Quantization Kinematical structure Equations of motion and symmetries Antibracket and the CME

• There is one more, interesting structure on $\mathfrak{BV}(M)$.

- There is one more, interesting structure on $\mathfrak{BV}(M)$.
- Elements of the BV complex can be treated as graded tensor powers of derivations of the Chevalley-Eilenberg algebra, i.e.:

$$\mathfrak{BV}(M) \subset S^{ullet}_{\mathfrak{F}(M)}\mathrm{Der}(\mathfrak{CE}(M)) = S^{ullet}_{\mathfrak{F}(M)}\mathrm{Der}\Big(\bigwedge_{\mathfrak{F}(M)}\mathfrak{s}(M)^*\Big)\,.$$

- There is one more, interesting structure on $\mathfrak{BV}(M)$.
- Elements of the BV complex can be treated as graded tensor powers of derivations of the Chevalley-Eilenberg algebra, i.e.:

$$\mathfrak{BV}(M) \subset S^{ullet}_{\mathfrak{F}(M)}\mathrm{Der}(\mathfrak{CE}(M)) = S^{ullet}_{\mathfrak{F}(M)}\mathrm{Der}\Big(\bigwedge_{\mathfrak{F}(M)}\mathfrak{s}(M)^*\Big).$$

• The antibracket on $S^{\bullet}_{\mathfrak{F}(M)}$ Der($\mathfrak{CE}(M)$) is just the Schouten bracket $\{., .\}$ defined by the properties:

- There is one more, interesting structure on $\mathfrak{BV}(M)$.
- Elements of the BV complex can be treated as graded tensor powers of derivations of the Chevalley-Eilenberg algebra, i.e.:

$$\mathfrak{BV}(M) \subset S^{ullet}_{\mathfrak{F}(M)} \mathrm{Der}(\mathfrak{CE}(M)) = S^{ullet}_{\mathfrak{F}(M)} \mathrm{Der}\Big(\bigwedge_{\mathfrak{F}(M)} \mathfrak{s}(M)^*\Big).$$

- The antibracket on $S^{\bullet}_{\mathfrak{F}(M)}$ Der($\mathfrak{CE}(M)$) is just the Schouten bracket $\{., .\}$ defined by the properties:
 - $\{X, Y\} = [X, Y]$ (commutator of derivations) $X, Y \in \text{Der}(\mathfrak{CE}(M)),$

- There is one more, interesting structure on $\mathfrak{BV}(M)$.
- Elements of the BV complex can be treated as graded tensor powers of derivations of the Chevalley-Eilenberg algebra, i.e.:

$$\mathfrak{BV}(M) \subset S^{ullet}_{\mathfrak{F}(M)}\mathrm{Der}(\mathfrak{CE}(M)) = S^{ullet}_{\mathfrak{F}(M)}\mathrm{Der}\Big(\bigwedge_{\mathfrak{F}(M)}\mathfrak{s}(M)^*\Big)\,.$$

- The antibracket on $S^{\bullet}_{\mathfrak{F}(M)}$ Der($\mathfrak{CE}(M)$) is just the Schouten bracket $\{., .\}$ defined by the properties:
 - $\{X, Y\} = [X, Y]$ (commutator of derivations) $X, Y \in \text{Der}(\mathfrak{CE}(M)),$
 - $\{X,F\} = X(F) = \partial_X F$, $F \in \mathfrak{CE}(M), X \in \mathrm{Der}(\mathfrak{CE}(M))$,

- There is one more, interesting structure on $\mathfrak{BV}(M)$.
- Elements of the BV complex can be treated as graded tensor powers of derivations of the Chevalley-Eilenberg algebra, i.e.:

$$\mathfrak{BV}(M) \subset S^{ullet}_{\mathfrak{F}(M)}\mathrm{Der}(\mathfrak{CE}(M)) = S^{ullet}_{\mathfrak{F}(M)}\mathrm{Der}\Big(\bigwedge_{\mathfrak{F}(M)}\mathfrak{s}(M)^*\Big)\,.$$

- The antibracket on $S^{\bullet}_{\mathfrak{F}(M)}$ Der($\mathfrak{CE}(M)$) is just the Schouten bracket $\{., .\}$ defined by the properties:
 - $\{X, Y\} = [X, Y]$ (commutator of derivations) $X, Y \in \text{Der}(\mathfrak{CE}(M)),$

•
$$\{X, F\} = X(F) = \partial_X F, \quad F \in \mathfrak{CE}(M), X \in \operatorname{Der}(\mathfrak{CE}(M)),$$

• $\{X, Y \land Z\} = \{X, Y\} \land Z + (-1)^{|Y|(|X|+1)}Y \land \{X, Z\}.$

BV differential in terms of the antibracket

In contrast to the standard approach, we don't restrict neither to compact spacetimes nor to compactly supported configurations. Therefore derivation δ_S = ⟨S'_M, .⟩ is not inner with respect to {., .}, but locally it can be written as: δ_SX = {X, L_M(f)}, f ≡ 1 on suppX, X ∈ 𝔅(M).

BV differential in terms of the antibracket

- In contrast to the standard approach, we don't restrict neither to compact spacetimes nor to compactly supported configurations. Therefore derivation δ_S = ⟨S'_M, .⟩ is not inner with respect to {., .}, but locally it can be written as: δ_SX = {X, L_M(f)}, f ≡ 1 on suppX, X ∈ 𝔅(M).
- Similarly differential γ is not inner with respect to {.,.}, but if the action of symmetries is local, we can find a natural transformation θ from D to Der(𝔅𝔅) s.t.:
 {ω, θ_M(f)} = γ(ω), f ≡ 1 on suppω, ω ∈ 𝔅𝔅(M).

BV differential in terms of the antibracket

- In contrast to the standard approach, we don't restrict neither to compact spacetimes nor to compactly supported configurations. Therefore derivation δ_S = ⟨S'_M, .⟩ is not inner with respect to {., .}, but locally it can be written as: δ_SX = {X, L_M(f)}, f ≡ 1 on suppX, X ∈ 𝔅(M).
- Similarly differential γ is not inner with respect to {.,.}, but if the action of symmetries is local, we can find a natural transformation θ from D to Der(𝔅𝔅) s.t.:
 {ω, θ_M(f)} = γ(ω), f ≡ 1 on suppω, ω ∈ 𝔅𝔅(M).
- The full BV differential is recovered from the sum of these two Lagrangians L and θ, i.e.:
 sF = {F, L_M^{ext}(f)}, f ≡ 1 on suppF, F ∈ 𝔅(M) and the extended Lagrangian is defined as L^{ext} = L + θ.

Classical master equation

• The BV differential *s* has to be nilpotent, i.e.: $s^2 = 0$. We can write this as a condition on the extended Lagrangian L^{ext} .

- The BV differential *s* has to be nilpotent, i.e.: $s^2 = 0$. We can write this as a condition on the extended Lagrangian L^{ext} .
- We define extended Lagrangians $L \in Lgr$ to be elements of the space $\bigoplus_{k=0}^{\infty} \operatorname{Nat}(\mathfrak{D}^k, \mathfrak{BV}_{\operatorname{loc}})$ satisfying the support property and the additivity rule in each argument. We can introduce on Lgr an equivalence relation: $L_1 \sim L_2$, if $\forall f_1, ..., f_k \in \mathfrak{D}^k(M)$

$$\operatorname{supp}((L_1 - L_2)_M(f_1, ..., f_k)) \subset \operatorname{supp}(df_1) \cup ... \cup \operatorname{supp}(df_k).$$

Classical master equation

- The BV differential *s* has to be nilpotent, i.e.: $s^2 = 0$. We can write this as a condition on the extended Lagrangian L^{ext} .
- We define extended Lagrangians $L \in Lgr$ to be elements of the space $\bigoplus_{k=0}^{\infty} \operatorname{Nat}(\mathfrak{D}^k, \mathfrak{BV}_{\operatorname{loc}})$ satisfying the support property and the additivity rule in each argument. We can introduce on Lgr an equivalence relation: $L_1 \sim L_2$, if $\forall f_1, \dots, f_k \in \mathfrak{D}^k(M)$

$$\operatorname{supp}((L_1 - L_2)_M(f_1, \dots, f_k)) \subset \operatorname{supp}(df_1) \cup \dots \cup \operatorname{supp}(df_k).$$

• The nilpotency of *s* is equivalent to the extended classical master equation:

$$\{L^{\text{ext}}, L^{\text{ext}}\} \sim 0.$$

 pAQFT

 Quantization
 QME and the quantum BV opera

 Renormalized time-ordered prod

Perturbative algebraic quantum field theory

• We start with the free theory defined by the quadratic action *S*.

Perturbative algebraic quantum field theory

- We start with the free theory defined by the quadratic action *S*.
- At the beginning we consider only regular functionals 𝔅_{reg}(M),
 i.e. such that F⁽ⁿ⁾(φ) ∈ C[∞]_c(Mⁿ),

Perturbative algebraic quantum field theory

- We start with the free theory defined by the quadratic action *S*.
- At the beginning we consider only regular functionals 𝔅_{reg}(M),
 i.e. such that F⁽ⁿ⁾(φ) ∈ C[∞]_c(Mⁿ),
- We define the *-product: F ★ G = m ∘ exp(ihΓ_Δ)(F ⊗ G), where m is the pointwise multiplication and Γ_Δ is defined as:

$$\Gamma_{\Delta} \doteq \frac{1}{2} \int dx \, dy \Delta(x, y) \frac{\delta}{\delta \varphi(x)} \otimes \frac{\delta}{\delta \varphi(y)}, \qquad \Delta = \Delta_R - \Delta_A.$$

Perturbative algebraic quantum field theory

- We start with the free theory defined by the quadratic action *S*.
- At the beginning we consider only regular functionals $\mathfrak{F}_{reg}(M)$, i.e. such that $F^{(n)}(\varphi) \in \mathbb{C}^{\infty}_{c}(M^{n})$,
- We define the *-product: F ★ G = m ∘ exp(ihΓ_Δ)(F ⊗ G), where m is the pointwise multiplication and Γ_Δ is defined as:

$$\Gamma_{\Delta} \doteq \frac{1}{2} \int dx \, dy \Delta(x, y) \frac{\delta}{\delta \varphi(x)} \otimes \frac{\delta}{\delta \varphi(y)}, \qquad \Delta = \Delta_R - \Delta_A.$$

• The time-ordering operator \mathcal{T} is defined as: $\mathcal{T}(F) \doteq e^{i\hbar\Gamma_{\Delta D}}(F)$, where $\Gamma_{\Delta D} = \int dx dy \Delta_D(x, y) \frac{\delta^2}{\delta\varphi(x)\delta\varphi(y)}$ and $\Delta_D = \frac{1}{2}(\Delta_R + \Delta_A)$ is the Dirac propagator.

Perturbative algebraic quantum field theory

- We start with the free theory defined by the quadratic action *S*.
- At the beginning we consider only regular functionals 𝔅_{reg}(M),
 i.e. such that F⁽ⁿ⁾(φ) ∈ C[∞]_c(Mⁿ),
- We define the *-product: F ★ G = m ∘ exp(ihΓ_Δ)(F ⊗ G), where m is the pointwise multiplication and Γ_Δ is defined as:

$$\Gamma_{\Delta} \doteq \frac{1}{2} \int dx \, dy \Delta(x, y) \frac{\delta}{\delta \varphi(x)} \otimes \frac{\delta}{\delta \varphi(y)}, \qquad \Delta = \Delta_R - \Delta_A.$$

The time-ordering operator ℑ is defined as: ℑ(F) = e^{iħΓΔD}(F), where ΓΔD = ∫ dxdyΔD(x, y) δ²/δφ(x)δφ(y) and ΔD = 1/2 (ΔR + ΔA) is the Dirac propagator.
Define the time-ordered product ·τ on ℑ(𝔅_{reg}(M)[[ħ]]) by:

 $F \cdot_{\mathfrak{T}} G \doteq \mathfrak{T}(\mathfrak{T}^{-1}F \cdot \mathfrak{T}^{-1}G)$

• Elements of the BV complex can be treated as smooth maps from $\mathfrak{E}(M)$ to a certain graded algebra $\mathcal{A}(M)$, equipped with a suitable topology.

- Elements of the BV complex can be treated as smooth maps from $\mathfrak{E}(M)$ to a certain graded algebra $\mathcal{A}(M)$, equipped with a suitable topology.
- For regular elements BD_{reg}(M) the time-ordering is defined by applying the operator T on X treated as an element of C[∞]_{reg}(𝔅(M), A(M)).

- Elements of the BV complex can be treated as smooth maps from $\mathfrak{E}(M)$ to a certain graded algebra $\mathcal{A}(M)$, equipped with a suitable topology.
- For regular elements $\mathfrak{BV}_{reg}(M)$ the time-ordering is defined by applying the operator \mathfrak{T} on X treated as an element of $\mathcal{C}^{\infty}_{reg}(\mathfrak{E}(M), \mathcal{A}(M))$.
- The time ordered antibracket {.,.}_τ on the space
 𝔅𝔅𝔅𝔅(𝔅𝔅)) ⊂ 𝔅[●]Der(𝔅𝔅_{reg}(𝔅𝔅)) is defined again as the
 Schouten bracket. Equivalently this can be written as:

$$\{X,Y\}_{\mathrm{T}} = -\int dx \left(\frac{\delta X}{\delta \varphi(x)} \cdot_{\mathrm{T}} \frac{\delta Y}{\delta \varphi^{\ddagger}(x)} + (-1)^{|X|} \frac{\delta X}{\delta \varphi^{\ddagger}(x)} \cdot_{\mathrm{T}} \frac{\delta Y}{\delta \varphi(x)} \right) ,$$

- Elements of the BV complex can be treated as smooth maps from $\mathfrak{E}(M)$ to a certain graded algebra $\mathcal{A}(M)$, equipped with a suitable topology.
- For regular elements $\mathfrak{BV}_{reg}(M)$ the time-ordering is defined by applying the operator \mathfrak{T} on X treated as an element of $\mathcal{C}^{\infty}_{reg}(\mathfrak{E}(M), \mathcal{A}(M))$.
- The time ordered antibracket {.,.}_τ on the space T(𝔅𝔅(𝑘)) ⊂ 𝔅[•]Der(𝔅𝔅_{reg}(𝑘)) is defined again as the Schouten bracket. Equivalently this can be written as:

$$\{X,Y\}_{\mathfrak{T}} = -\int dx \left(\frac{\delta X}{\delta \varphi(x)} \cdot_{\mathfrak{T}} \frac{\delta Y}{\delta \varphi^{\ddagger}(x)} + (-1)^{|X|} \frac{\delta X}{\delta \varphi^{\ddagger}(x)} \cdot_{\mathfrak{T}} \frac{\delta Y}{\delta \varphi(x)} \right) ,$$

• Similarly:

$$\{X,Y\}_{\star} = -\int dx \left(\frac{\delta X}{\delta \varphi(x)} \star \frac{\delta Y}{\delta \varphi^{\ddagger}(x)} + (-1)^{|X|} \frac{\delta X}{\delta \varphi^{\ddagger}(x)} \star \frac{\delta Y}{\delta \varphi(x)} \right)$$

 PAQFT

 Quantization
 QME and the quantum BV operator

 Renormalized time-ordered product

Nonrenormalized QME and the quantum BV operator

• The quantum master equation is the condition that the S-matrix is invariant under the quantum Koszul operator $\{., S\}_{\star}$:

$$\{e_{\tau}^{iV/\hbar},S\}_{\star}=0\,,$$

A covariance pAQFT Quantization QME and the quantum BV operator Renormalized time-ordered products

Nonrenormalized QME and the quantum BV operator

• The quantum master equation is the condition that the S-matrix is invariant under the quantum Koszul operator {., S}_{*}:

$$\{e_{\tau}^{iV/\hbar},S\}_{\star}=0\,,$$

• For regular V this is: $\frac{1}{2} \{S + V, S + V\}_{\mathbb{T}} = i\hbar \bigtriangleup (S + V)$, where: $\bigtriangleup Q = (-1)^{(1+|Q|)} \int dx \frac{\delta^2 Q}{\delta \varphi^{\ddagger}(x) \delta \varphi(x)}, Q \in \Lambda \mathfrak{V}_{\text{reg}}(M).$

Nonrenormalized QME and the quantum BV operator

• The quantum master equation is the condition that the S-matrix is invariant under the quantum Koszul operator $\{., S\}_{\star}$:

$$\{e_{\tau}^{iV/\hbar},S\}_{\star}=0\,,$$

- For regular V this is: $\frac{1}{2} \{S + V, S + V\}_{\mathfrak{T}} = i\hbar \bigtriangleup (S + V)$, where: $\bigtriangleup Q = (-1)^{(1+|Q|)} \int dx \frac{\delta^2 Q}{\delta \varphi^{\ddagger}(x) \delta \varphi(x)}, Q \in \Lambda \mathfrak{V}_{\text{reg}}(M).$
- \triangle is ill defined on $\mathfrak{BV}_{loc}(M)$! (renormalization needed).

Nonrenormalized QME and the quantum BV operator

• The quantum master equation is the condition that the S-matrix is invariant under the quantum Koszul operator {., S}*:

$$\{e_{\tau}^{iV/\hbar},S\}_{\star}=0\,,$$

- For regular V this is: $\frac{1}{2} \{S + V, S + V\}_{\mathcal{T}} = i\hbar \bigtriangleup (S + V)$, where: $\bigtriangleup Q = (-1)^{(1+|Q|)} \int dx \frac{\delta^2 Q}{\delta \varphi^{\ddagger}(x) \delta \varphi(x)}, Q \in \Lambda \mathfrak{V}_{\text{reg}}(M).$
- \triangle is ill defined on $\mathfrak{BV}_{loc}(M)$! (renormalization needed).
- The quantum BV operator \hat{s} is defined as:

$$\hat{s}X = e_{ au}^{-iV/\hbar} \cdot_{ au} \left(\{ e_{ au}^{iV/\hbar} \cdot_{ au} X, S \}_{\star}
ight) \,.$$

Nonrenormalized QME and the quantum BV operator

• The quantum master equation is the condition that the S-matrix is invariant under the quantum Koszul operator {., S}*:

$$\{e^{iV/\hbar}_{\scriptscriptstyle T},S\}_\star=0\,,$$

- For regular V this is: $\frac{1}{2} \{S + V, S + V\}_{\mathcal{T}} = i\hbar \bigtriangleup (S + V)$, where: $\bigtriangleup Q = (-1)^{(1+|Q|)} \int dx \frac{\delta^2 Q}{\delta \varphi^{\ddagger}(x) \delta \varphi(x)}, Q \in \Lambda \mathfrak{V}_{\text{reg}}(M).$
- \triangle is ill defined on $\mathfrak{BV}_{loc}(M)$! (renormalization needed).
- The quantum BV operator \hat{s} is defined as:

$$\hat{s}X = e_{\mathfrak{T}}^{-iV/\hbar} \cdot_{\mathfrak{T}} \left(\{ e_{\mathfrak{T}}^{iV/\hbar} \cdot_{\mathfrak{T}} X, S \}_{\star}
ight) \,.$$

• \hat{s} on regular functionals can be also written as:

 $\hat{s} = \{., S + V\}_{T} - i\hbar \bigtriangleup$.

 PAQFT

 Quantization
 QME and the quantum BV operator

 Renormalized time-ordered products

Renormalized time-ordered products

• We use the causal approach of Epstein-Glaser ([Epstein-Glaser 73]).

Renormalized time-ordered products

- We use the causal approach of Epstein-Glaser ([Epstein-Glaser 73]).
- The time-ordered product \mathcal{T}^n of *n* local functionals is well defined if their supports are disjoint.

Renormalized time-ordered products

- We use the causal approach of Epstein-Glaser ([Epstein-Glaser 73]).
- The time-ordered product \mathcal{T}^n of *n* local functionals is well defined if their supports are disjoint.
- Assuming the causal factorization property $\mathcal{T}_n(F_1, \ldots, F_n) = \mathcal{T}_k(F_1, \ldots, F_k) \star \mathcal{T}_{n-k}(F_{k+1}, \ldots, F_n)$, and $\operatorname{supp}\mathcal{T}_n(F_1, \ldots, F_n) \subset \bigcup \operatorname{supp}F_i$, we can extend \mathcal{T}^n to arbitrary local functionals but the extension is not unique: renormalization ambiguity described by the renormalization group.

Renormalized time-ordered products

- We use the causal approach of Epstein-Glaser ([Epstein-Glaser 73]).
- The time-ordered product \mathcal{T}^n of *n* local functionals is well defined if their supports are disjoint.
- Assuming the causal factorization property $\mathcal{T}_n(F_1, \ldots, F_n) = \mathcal{T}_k(F_1, \ldots, F_k) \star \mathcal{T}_{n-k}(F_{k+1}, \ldots, F_n)$, and $\operatorname{supp}\mathcal{T}_n(F_1, \ldots, F_n) \subset \bigcup \operatorname{supp}F_i$, we can extend \mathcal{T}^n to arbitrary local functionals but the extension is not unique: renormalization ambiguity described by the renormalization group.

Theorem (K. Fredenhagen, K.R. 2011)

The renormalized time-ordered product $\cdot_{\mathbb{T}_r}$ is an associative product on $\mathfrak{T}_r(\mathfrak{F}(\mathbb{M}))$ given by

$$F \cdot_{\mathfrak{T}_{\mathbf{r}}} G \doteq \mathfrak{T}_{\mathbf{r}}(\mathfrak{T}_{\mathbf{r}}^{-1}F \cdot \mathfrak{T}_{\mathbf{r}}^{-1}G),$$

with $\mathfrak{T}_{\mathbf{r}} = (\bigoplus_n \mathfrak{T}_n) \circ \beta$, where $\beta : \mathfrak{F}(\mathbb{M}) \to S^{\bullet} \mathfrak{F}_{\text{loc}}^{(0)}(\mathbb{M})$ is the inverse of multiplication *m*.

Renormalized QME and the quantum BV operator

• Since \cdot_{T_r} is an associative, commutative product, we can use it in place of \cdot_T and define the renormalized QME and the quantum BV operator as:

$$egin{aligned} 0 &= \{e^{iV/\hbar}_{arsigma_{ au}},S\}_{\star}\,, \ \hat{s}(X) &= e^{-iV/\hbar}_{arsigma_{ au}}\cdot_{arsigma_{ au}}\left(\{e^{iV/\hbar}_{arsigma_{ au}}\cdot_{arsigma_{ au}}X,S\}_{\star}
ight)\,. \end{aligned}$$

Renormalized QME and the quantum BV operator

• Since \cdot_{T_r} is an associative, commutative product, we can use it in place of \cdot_T and define the renormalized QME and the quantum BV operator as:

$$egin{aligned} 0 &= \{e^{iV/\hbar}_{\mathrm{Tr}},S\}_\star\,, \ \hat{s}(X) &= e^{-iV/\hbar}_{\mathrm{Tr}}\cdot_{\mathrm{Tr}}\left(\{e^{iV/\hbar}_{\mathrm{Tr}}\cdot_{\mathrm{Tr}}X,S\}_\star
ight)\,. \end{aligned}$$

• These formulas get even simpler if we use the anomalous Master Ward Identity ([Brenecke-Dütsch 08, Hollands 08]). We obtained:

$$0 = \frac{1}{2} \{ V + S, V + S \}_{\mathfrak{I}_{r}} - \bigtriangleup_{V}(V) ,$$
$$\hat{s}X = \{ X, V + S \}_{\mathfrak{I}_{r}} - \bigtriangleup_{V}(X) .$$

where $\triangle_V(X)$ is the anomaly. It is local and of order $\mathcal{O}(\hbar)$.

Renormalized QME and the quantum BV operator

• Since \cdot_{T_r} is an associative, commutative product, we can use it in place of \cdot_T and define the renormalized QME and the quantum BV operator as:

$$egin{aligned} 0 &= \{e^{iV/\hbar}_{arsigma_{
m T}},S\}_{\star}\,, \ \hat{s}(X) &= e^{-iV/\hbar}_{arsigma_{
m T}}\cdot_{arsigma_{
m T}}\left(\{e^{iV/\hbar}_{arsigma_{
m T}}\cdot_{arsigma_{
m T}}X,S\}_{\star}
ight)\,. \end{aligned}$$

• These formulas get even simpler if we use the anomalous Master Ward Identity ([Brenecke-Dütsch 08, Hollands 08]). We obtained:

$$0 = \frac{1}{2} \{ V + S, V + S \}_{\mathfrak{I}_{r}} - \bigtriangleup_{V}(V) ,$$
$$\hat{s}X = \{ X, V + S \}_{\mathfrak{I}_{r}} - \bigtriangleup_{V}(X) .$$

where $\triangle_V(X)$ is the anomaly. It is local and of order $\mathcal{O}(\hbar)$.

 By using the renormalized time ordered product ·_𝔅 we obtained in place of △, the interaction-dependent operator △_V.

• In physical examples V is not localized and cannot be understood as an element of $\mathfrak{F}(M)$.

- In physical examples V is not localized and cannot be understood as an element of $\mathfrak{F}(M)$.
- We have to go to more abstract level and formulate the QME on the level of natural Lagrangians.

- In physical examples V is not localized and cannot be understood as an element of $\mathfrak{F}(M)$.
- We have to go to more abstract level and formulate the QME on the level of natural Lagrangians.
- Let S_0 be the free generalized Lagrangian and and S_1 the interaction term. The QME on the level of natural transformations reads:

$$e_{{\mathfrak T}_{\mathrm{r}}}^{-iS_1/\hbar}\cdot_{{\mathfrak T}_{\mathrm{r}}}\left(\{e_{{\mathfrak T}_{\mathrm{r}}}^{iS_1/\hbar},S_0\}_{\star}
ight)\sim 0\,,$$

- In physical examples V is not localized and cannot be understood as an element of $\mathfrak{F}(M)$.
- We have to go to more abstract level and formulate the QME on the level of natural Lagrangians.
- Let S_0 be the free generalized Lagrangian and and S_1 the interaction term. The QME on the level of natural transformations reads:

$$e_{ extsf{s}_{\mathrm{r}}}^{-iS_{1}/\hbar}\cdot_{ extsf{s}_{\mathrm{r}}}\left(\{e_{ extsf{s}_{\mathrm{r}}}^{iS_{1}/\hbar},S_{0}\}_{\star}
ight)\sim0\,,$$

• The quantum BV operator is defined as

$$\hat{s}(X) = e_{\tau_{r}}^{-iS_{1M}(f_{1})/\hbar} \cdot_{\tau_{r}} \left(\{ e_{\tau_{r}}^{iS_{1M}(f_{1})/\hbar} \cdot_{\tau_{r}} X, S_{0M}(f) \}_{\star} \right) \,,$$

where supp $X \subset \mathcal{O}$ and $f, f_1 \equiv 1$ on \mathcal{O} .

pAQFT QME and the quantum BV operator Renormalized time-ordered products

Renormalization group action

Proposition (K. Fredenhagen, K.R. 2011)

Let L_1 be a natural Lagrangian that solves the QME for the renormalized time-ordered product \mathfrak{T}_r . Let $Z \in \mathfrak{R}$ be the element of the renormalization group, which transforms between the *S*-matrices corresponding to \mathfrak{T}_r and \mathfrak{T}'_r , i.e. $e_{\mathfrak{T}_r}^{L_{1M}(f)} = e_{\mathfrak{T}'_r}^{Z(L_{1M}(f))}$. Then $Z(L_1)$ solves the QME corresponding to \mathfrak{T}'_r .

pAQFT QME and the quantum BV operator Renormalized time-ordered products

Renormalization group action

Proposition (K. Fredenhagen, K.R. 2011)

Let L_1 be a natural Lagrangian that solves the QME for the renormalized time-ordered product \mathfrak{T}_r . Let $Z \in \mathfrak{R}$ be the element of the renormalization group, which transforms between the *S*-matrices corresponding to \mathfrak{T}_r and \mathfrak{T}'_r , i.e. $e_{\mathfrak{T}_r}^{L_{1M}(f)} = e_{\mathfrak{T}'_r}^{Z(L_{1M}(f))}$. Then $Z(L_1)$ solves the QME corresponding to \mathfrak{T}'_r .

For the quantum BV operator we have a relation:

$$\hat{s}_{Z(S_1)} \circ Z^{(1)}(S_1) = Z^{(1)}(S_1) \circ \hat{s}'_{S_1}.$$

• We formulated the classical BV complex in the language of LCFT and generalized it to the level of natural transformations,

- We formulated the classical BV complex in the language of LCFT and generalized it to the level of natural transformations,
- We formulated the BV quantization in the framework of pAQFT and proposed algebraic definitions of the QME and the quantum BV operator,

- We formulated the classical BV complex in the language of LCFT and generalized it to the level of natural transformations,
- We formulated the BV quantization in the framework of pAQFT and proposed algebraic definitions of the QME and the quantum BV operator,
- We proved the associativity of the renormalized time-ordered product and this allowed us to use T_r instead of T for transporting classical structures into the quantum algebra,

- We formulated the classical BV complex in the language of LCFT and generalized it to the level of natural transformations,
- We formulated the BV quantization in the framework of pAQFT and proposed algebraic definitions of the QME and the quantum BV operator,
- We proved the associativity of the renormalized time-ordered product and this allowed us to use T_r instead of T for transporting classical structures into the quantum algebra,
- The renormalized QME and the quantum BV operator are defined in a natural way and don't suffer from divergent terms,

- We formulated the classical BV complex in the language of LCFT and generalized it to the level of natural transformations,
- We formulated the BV quantization in the framework of pAQFT and proposed algebraic definitions of the QME and the quantum BV operator,
- We proved the associativity of the renormalized time-ordered product and this allowed us to use T_r instead of T for transporting classical structures into the quantum algebra,
- The renormalized QME and the quantum BV operator are defined in a natural way and don't suffer from divergent terms,
- We generalized these structures to the level of natural Lagrangians and showed that they transform correctly under the action of the renormalization group.

Thank you for your attention!