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Locally covariant field theory

A convenient framework to address the issue of diffeomorphism
invariance is provided by the LCFT [Brunetti-Fredenhagen-Verch 2003].

It was successful as a general paradigm for QFT on curved
spacetimes.

To formulate a theory in this framework we need some notions
from the category theory.
In this talk I will use the following categories:

Loc Obj(Loc): all four-dimensional, globally hyperbolic oriented and
time-oriented spacetimes (M, g).
Morphisms: Isometric embeddings that preserve orientation,
time-orientation and the causal structure of the embedded
spacetime.

Vec Obj(Vec): (small) topological vector spaces
Morphisms: morphisms of topological vector spaces
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Kinematical structure

In our formulation, with a physical system we associate:

The configurations space E(M) of all fields of the theory. E is a
contravariant functor from Loc (spacetimes) to Vec (lcvs). For
the scalar field E(M) = C∞(M).

The space of compactly supported fields Ec(M). Ec is a
covariant functor from Loc to Vec.

D : Loc→ Vec a covariant functor that assigns to M the space
of compactly supported test functions D(M).

E(M)

M

E
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Functionals

Observables of the theory are described by functionals on E(M),
i.e. a measurement of an observable assigns a number to a field
configuration of the system.

Let C∞(E(M)) denote the space of smooth (in the sense of
calculus on lcvs) maps from the configuration space to R.
The spacetime support of a function F ∈ C∞(E(M)) is defined:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M),

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .
F is additive if ∀ϕ1, ϕ2, ϕ3∈E(M) s.t. suppϕ1 ∩ suppϕ3 =∅:

F(ϕ1 + ϕ2 + ϕ3) = F(ϕ1 + ϕ2)− F(ϕ2) + F(ϕ2 + ϕ3) .

F is local if it is of the form: F(ϕ) =

∫
M

f (jx(ϕ)) dµ(x) ,

In this talk we restrict ourselves to products of local functionals,
we denote this space by F(M).

Katarzyna Rejzner CME and QME 5 / 23



Local covariance
Quantization

Kinematical structure
Equations of motion and symmetries
Antibracket and the CME

Functionals

Observables of the theory are described by functionals on E(M),
i.e. a measurement of an observable assigns a number to a field
configuration of the system.
Let C∞(E(M)) denote the space of smooth (in the sense of
calculus on lcvs) maps from the configuration space to R.

The spacetime support of a function F ∈ C∞(E(M)) is defined:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M),

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .
F is additive if ∀ϕ1, ϕ2, ϕ3∈E(M) s.t. suppϕ1 ∩ suppϕ3 =∅:

F(ϕ1 + ϕ2 + ϕ3) = F(ϕ1 + ϕ2)− F(ϕ2) + F(ϕ2 + ϕ3) .

F is local if it is of the form: F(ϕ) =

∫
M

f (jx(ϕ)) dµ(x) ,

In this talk we restrict ourselves to products of local functionals,
we denote this space by F(M).

Katarzyna Rejzner CME and QME 5 / 23



Local covariance
Quantization

Kinematical structure
Equations of motion and symmetries
Antibracket and the CME

Functionals

Observables of the theory are described by functionals on E(M),
i.e. a measurement of an observable assigns a number to a field
configuration of the system.
Let C∞(E(M)) denote the space of smooth (in the sense of
calculus on lcvs) maps from the configuration space to R.
The spacetime support of a function F ∈ C∞(E(M)) is defined:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M),

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .

F is additive if ∀ϕ1, ϕ2, ϕ3∈E(M) s.t. suppϕ1 ∩ suppϕ3 =∅:

F(ϕ1 + ϕ2 + ϕ3) = F(ϕ1 + ϕ2)− F(ϕ2) + F(ϕ2 + ϕ3) .

F is local if it is of the form: F(ϕ) =

∫
M

f (jx(ϕ)) dµ(x) ,

In this talk we restrict ourselves to products of local functionals,
we denote this space by F(M).

Katarzyna Rejzner CME and QME 5 / 23



Local covariance
Quantization

Kinematical structure
Equations of motion and symmetries
Antibracket and the CME

Functionals

Observables of the theory are described by functionals on E(M),
i.e. a measurement of an observable assigns a number to a field
configuration of the system.
Let C∞(E(M)) denote the space of smooth (in the sense of
calculus on lcvs) maps from the configuration space to R.
The spacetime support of a function F ∈ C∞(E(M)) is defined:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M),

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .
F is additive if ∀ϕ1, ϕ2, ϕ3∈E(M) s.t. suppϕ1 ∩ suppϕ3 =∅:

F(ϕ1 + ϕ2 + ϕ3) = F(ϕ1 + ϕ2)− F(ϕ2) + F(ϕ2 + ϕ3) .

F is local if it is of the form: F(ϕ) =

∫
M

f (jx(ϕ)) dµ(x) ,

In this talk we restrict ourselves to products of local functionals,
we denote this space by F(M).

Katarzyna Rejzner CME and QME 5 / 23



Local covariance
Quantization

Kinematical structure
Equations of motion and symmetries
Antibracket and the CME

Functionals

Observables of the theory are described by functionals on E(M),
i.e. a measurement of an observable assigns a number to a field
configuration of the system.
Let C∞(E(M)) denote the space of smooth (in the sense of
calculus on lcvs) maps from the configuration space to R.
The spacetime support of a function F ∈ C∞(E(M)) is defined:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M),

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .
F is additive if ∀ϕ1, ϕ2, ϕ3∈E(M) s.t. suppϕ1 ∩ suppϕ3 =∅:

F(ϕ1 + ϕ2 + ϕ3) = F(ϕ1 + ϕ2)− F(ϕ2) + F(ϕ2 + ϕ3) .

F is local if it is of the form: F(ϕ) =

∫
M

f (jx(ϕ)) dµ(x) ,

In this talk we restrict ourselves to products of local functionals,
we denote this space by F(M).

Katarzyna Rejzner CME and QME 5 / 23



Local covariance
Quantization

Kinematical structure
Equations of motion and symmetries
Antibracket and the CME

Functionals

Observables of the theory are described by functionals on E(M),
i.e. a measurement of an observable assigns a number to a field
configuration of the system.
Let C∞(E(M)) denote the space of smooth (in the sense of
calculus on lcvs) maps from the configuration space to R.
The spacetime support of a function F ∈ C∞(E(M)) is defined:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M),

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .
F is additive if ∀ϕ1, ϕ2, ϕ3∈E(M) s.t. suppϕ1 ∩ suppϕ3 =∅:

F(ϕ1 + ϕ2 + ϕ3) = F(ϕ1 + ϕ2)− F(ϕ2) + F(ϕ2 + ϕ3) .

F is local if it is of the form: F(ϕ) =

∫
M

f (jx(ϕ)) dµ(x) ,

In this talk we restrict ourselves to products of local functionals,
we denote this space by F(M).

Katarzyna Rejzner CME and QME 5 / 23



Local covariance
Quantization

Kinematical structure
Equations of motion and symmetries
Antibracket and the CME

Vector fields

Vector fields X on E(M) (trivial infinite dimensional manifold)
can be considered as maps from E(M) to E(M).

We restrict ourselves to smooth maps X with image in Ec(M).
They act on F(M) as derivations: ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉
We consider only the multilocal (products of local vector fields
and multilocal functionals) vector fields with compact support.

The space of vector fields with above properties is denoted by
V(M). V becomes a (covariant) functor by setting:
Vχ(X) = Ecχ ◦ X ◦ Eχ,
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Dynamics

The dynamics is introduced by a generalized Lagrangian L which
is a natural transformation between functors D and Floc, s.t.:

supp(LM(f )) ⊆ supp(f ),
LM(•) is additive in f .

The action S(L) is an equivalence class of Lagrangians. We say
that L1 ∼ L2 if ∀f ∈ D(M), M ∈ Obj(Loc):

supp(L1,M − L2,M)(f ) ⊂ supp df .

For example: LM(f ) =

∫
M

(1
2
ϕ2 +

1
2
∇µϕ∇µϕ

)
f dvolM.
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Equations of motion and symmetries

The Euler-Lagrange derivative of S is defined by:〈
S′M(ϕ), h

〉
=
〈

LM(f )(1)(ϕ), h
〉

, f ≡ 1 on supph. The field

equation is: S′M(ϕ) = 0. The space of solutions is denoted by
ES(M) ⊂ E(M).

X ∈ V(M) is called a symmetry of the action S if ∀ϕ ∈ E(M):

0 =
〈
S′M(ϕ),X(ϕ)

〉
= ∂X(SM)(ϕ).

In other words: a symmetry is a direction in E(M) in which the
action is constant. We denote the space of symmetries by s(M).

Msupp(f )

supp(h)
f ≡ 1

Katarzyna Rejzner CME and QME 8 / 23
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Equations of motion and symmetries

We can define the space of on-shell fnctionals FS(M) as the
quotient FS(M) = F(M)/F0(M), where F0(M) is the ideal
“generated by equations of motion” in the following sense:
∀F ∈ F0(M) ∃X ∈ V(M) such that F =

〈
S′M,X

〉
=: δS(X).

δS is called the Koszul map. Symmetries constitute its kernel.

We obtain a sequence: 0→ s(M) ↪→ V(M)
δS−→ F(M)→ 0.

The differential δ .
= ι⊕ δS ⊕ 0 is called the Koszul-Tate

differential. On-shell functionals are described by its
0-homology: FS(M) = H0(δ).
From this we obtain the graded differential algebra, which is a
resolution of FS(M), by taking graded symmetric tensor powers
of the module s(M)⊕V(M)⊕ F(M). We arrive at:
KT(M)

.
=
(

S•F s(M)⊗F

∧
F
V(M), δ

)
.

It is called the Koszul-Tate resolution.
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Invariants

The space of symmetries s(M) is a Lie subalgebra of V(M) and
has a natural action (as a Lie algebroid) on F(M).

It also acts on the space FS(M) of on-shell functionals, but this
action is not faithfull.
In physics we are interested in the space of on-shell functionals,
invariant under the action of s(M). We denote this space by
Finv

S (M) and call it gauge invariant on-shell functionals.
It can be easily characterized with the Chevalley-Eilenberg
complex

(
CES(M)

.
=
∧

F
s∗(M)⊗FFS(M), γ

)
.

s∗(M) is defined as C∞(E(M),E′(M))/I, where
I ⊂ C∞(E(M),E′(M)) is the ideal of forms vanishing on s(M).
In degree 0, γ acts as: (γF)(ξ)

.
= ∂ξF, ξ ∈ s(M), F ∈ FS(M).

If F ∈ Finv
S (M) then γF ≡ 0, so the H0(γ) characterizes the

gauge invariant on-shell functionals.
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BV complex

In physics it is sometimes convenient to go off-shell. Therefore
we replace FS(M) by its resolution KT(M) in the definition of
the Chevalley-Eilenberg complex.

CES(M)
.
=
∧
F

s∗(M)⊗F FS(M)

We obtain the graded algebra BV(M) with a differential δ,
which acts on

∧
F
s(M)∗ as the identity and the differential γ is

in a natural way extended to the full algebra BV(M). Their sum
is the BV differential s = δ + γ.
The Chevalley-Eilenberg differential γ acts on
H0(δ) =

∧
F
s(M)∗ ⊗F FS(M) and we have:

H0(H0(δ), γ) = Finv
S (M) .

Moreover it holds: H0(H0(δ), γ) = H0(s).
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Antibracket

There is one more, interesting structure on BV(M).

Elements of the BV complex can be treated as graded tensor
powers of derivations of the Chevalley-Eilenberg algebra, i.e.:

BV(M) ⊂ S•F(M)Der(CE(M)) = S•F(M)Der
( ∧

F(M)

s(M)∗
)
.

The antibracket on S•F(M)Der(CE(M)) is just the Schouten bracket
{., .} defined by the properties:

{X,Y} = [X,Y] (commutator of derivations)
X,Y ∈ Der(CE(M)),
{X,F} = X(F) = ∂XF, F ∈ CE(M), X ∈ Der(CE(M)),
{X,Y ∧ Z} = {X,Y} ∧ Z + (−1)|Y|(|X|+1)Y ∧ {X,Z}.
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BV differential in terms of the antibracket

In contrast to the standard approach, we don’t restrict neither to
compact spacetimes nor to compactly supported configurations.
Therefore derivation δS =

〈
S′M, .

〉
is not inner with respect to

{., .}, but locally it can be written as:
δSX = {X,LM(f )}, f ≡ 1 on suppX, X ∈ V(M).

Similarly differential γ is not inner with respect to {., .}, but if
the action of symmetries is local, we can find a natural
transformation θ from D to Der(CE) s.t.:
{ω, θM(f )} = γ(ω), f ≡ 1 on suppω, ω ∈ CE(M).

The full BV differential is recovered from the sum of these two
Lagrangians L and θ, i.e.:
sF = {F,Lext

M (f )}, f ≡ 1 on suppF, F ∈ V(M)
and the extended Lagrangian is defined as Lext .= L + θ.
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Classical master equation

The BV differential s has to be nilpotent, i.e.: s2 = 0. We can
write this as a condition on the extended Lagrangian Lext.

We define extended Lagrangians L ∈ Lgr to be elements of the

space
∞⊕

k=0

Nat(Dk,BVloc) satisfying the support property and

the additivity rule in each argument. We can introduce on Lgr an
equivalence relation: L1 ∼ L2, if ∀f1, ..., fk ∈ Dk(M)

supp((L1 − L2)M(f1, ..., fk)) ⊂ supp(df1) ∪ ... ∪ supp(dfk) .

The nilpotency of s is equivalent to the extended classical master
equation:

{Lext,Lext} ∼ 0 .
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Perturbative algebraic quantum field theory

We start with the free theory defined by the quadratic action S.

At the beginning we consider only regular functionals Freg(M),
i.e. such that F(n)(ϕ) ∈ C∞c (Mn),
We define the ?-product: F ?G .

= m ◦ exp(i~Γ∆)(F ⊗G), where
m is the pointwise multiplication and Γ∆ is defined as:

Γ∆
.
=

1
2

∫
dx dy∆(x, y)

δ

δϕ(x)
⊗ δ

δϕ(y)
, ∆ = ∆R −∆A .

The time-ordering operator T is defined as: T(F)
.
= ei~Γ∆D (F),

where Γ∆D =

∫
dxdy∆D(x, y)

δ2

δϕ(x)δϕ(y)
and

∆D =
1
2

(∆R + ∆A) is the Dirac propagator.

Define the time-ordered product ·T on T(Freg(M)[[~]]) by:

F ·T G .
= T(T−1F · T−1G)
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Time ordered BV complex and the antibracket

Elements of the BV complex can be treated as smooth maps
from E(M) to a certain graded algebra A(M), equipped with a
suitable topology.

For regular elements BVreg(M) the time-ordering is defined by
applying the operator T on X treated as an element of
C∞reg(E(M),A(M)).
The time ordered antibracket {., .}T on the space
T(BV(M)) ⊂ S•Der(TCEreg(M)) is defined again as the
Schouten bracket. Equivalently this can be written as:

{X,Y}T = −
∫

dx
(
δX
δϕ(x)

·T
δY

δϕ‡(x)
+ (−1)|X|

δX
δϕ‡(x)

·T
δY
δϕ(x)

)
,

Similarly:

{X,Y}? = −
∫

dx
(
δX
δϕ(x)

?
δY

δϕ‡(x)
+ (−1)|X|

δX
δϕ‡(x)

?
δY
δϕ(x)

)
.
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Nonrenormalized QME and the quantum BV operator

The quantum master equation is the condition that the S-matrix
is invariant under the quantum Koszul operator {., S}?:

{eiV/~
T , S}? = 0 ,

For regular V this is:
1
2
{S + V, S + V}T = i~4 (S + V) , where:

4Q = (−1)(1+|Q|)
∫

dx
δ2Q

δϕ‡(x)δϕ(x)
, Q ∈ ΛVreg(M).

4 is ill defined on BVloc(M)! (renormalization needed).
The quantum BV operator ŝ is defined as:

ŝX = e−iV/~
T ·T

(
{eiV/~

T ·T X, S}?
)
.

ŝ on regular functionals can be also written as:

ŝ = {., S + V}T − i~4 .
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Renormalized time-ordered products

We use the causal approach of Epstein-Glaser ([Epstein-Glaser 73]).

The time-ordered product T n of n local functionals is well
defined if their supports are disjoint.
Assuming the causal factorization property
Tn(F1, . . . ,Fn) = Tk(F1, . . . ,Fk) ? Tn−k(Fk+1, . . . ,Fn), and
suppTn(F1, . . . ,Fn) ⊂

⋃
suppFi, we can extend T n to arbitrary

local functionals but the extension is not unique: renormalization
ambiguity described by the renormalization group.

Theorem (K. Fredenhagen, K.R. 2011)
The renormalized time-ordered product ·Tr is an associative product
on Tr(F(M)) given by

F ·Tr G .
= Tr(T

−1
r F · T−1

r G) ,

with Tr = (⊕nTn) ◦ β, where β : F(M)→ S•F(0)
loc (M) is the inverse of

multiplication m.
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⋃
suppFi, we can extend T n to arbitrary

local functionals but the extension is not unique: renormalization
ambiguity described by the renormalization group.

Theorem (K. Fredenhagen, K.R. 2011)
The renormalized time-ordered product ·Tr is an associative product
on Tr(F(M)) given by

F ·Tr G .
= Tr(T

−1
r F · T−1

r G) ,

with Tr = (⊕nTn) ◦ β, where β : F(M)→ S•F(0)
loc (M) is the inverse of

multiplication m.
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Renormalized QME and the quantum BV operator

Since ·Tr is an associative, commutative product, we can use it in
place of ·T and define the renormalized QME and the quantum
BV operator as:

0 = {eiV/~
Tr , S}? ,

ŝ(X) = e−iV/~
Tr ·Tr

(
{eiV/~

Tr ·Tr X, S}?
)
.

These formulas get even simpler if we use the anomalous Master
Ward Identity ([Brenecke-Dütsch 08, Hollands 08]). We obtained:

0 =
1
2
{V + S,V + S}Tr −4V(V) ,

ŝX = {X,V + S}Tr −4V(X) .

where4V(X) is the anomaly. It is local and of order O(~).
By using the renormalized time ordered product ·T we obtained
in place of4, the interaction-dependent operator4V .
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QME in the algebraic adiabatic limit

In physical examples V is not localized and cannot be understood
as an element of F(M).

We have to go to more abstract level and formulate the QME on
the level of natural Lagrangians.
Let S0 be the free generalized Lagrangian and and S1 the
interaction term. The QME on the level of natural
transformations reads:

e−iS1/~
Tr ·Tr

(
{eiS1/~

Tr , S0}?
)
∼ 0 ,

The quantum BV operator is defined as

ŝ(X) = e−iS1M(f1)/~
Tr ·Tr

(
{eiS1M(f1)/~

Tr ·Tr X, S0M(f )}?
)
,

where supp X ⊂ O and f , f1 ≡ 1 on O.
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Renormalization group action

Proposition (K. Fredenhagen, K.R. 2011)
Let L1 be a natural Lagrangian that solves the QME for the
renormalized time-ordered product Tr. Let Z ∈ R be the element of
the renormalization group, which transforms between the S-matrices
corresponding to Tr and Tr

′, i.e. eL1M(f )
Tr = eZ(L1M(f ))

Tr′
. Then Z(L1)

solves the QME corresponding to Tr
′.

For the quantum BV operator we have a relation:

ŝZ(S1) ◦ Z(1)(S1) = Z(1)(S1) ◦ ŝ′S1
.
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Summary of the results

Summary of the results

We formulated the classical BV complex in the language of
LCFT and generalized it to the level of natural transformations,

We formulated the BV quantization in the framework of pAQFT

and proposed algebraic definitions of the QME and the quantum
BV operator,

We proved the associativity of the renormalized time-ordered
product and this allowed us to use Tr instead of T for
transporting classical structures into the quantum algebra,

The renormalized QME and the quantum BV operator are defined
in a natural way and don’t suffer from divergent terms,

We generalized these structures to the level of natural
Lagrangians and showed that they transform correctly under the
action of the renormalization group.
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Summary of the results

Thank you for your attention!
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