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Statement of the problem

In our formulation with a physical system we associate:
The configurations space E(M) of all fields of the theory. E is a
contravariant functor from Loc (spacetimes) to Vec (lcvs).
The space of compactly supported fields Ec(M). Ec is a
covariant functor from Loc to Vec.
D : Loc→ Vec a covariant functor that assigns to M the space
of compactly supported test functions D(M).
The space of smooth, compactly supported functionals on E(M).
This assignment also defines a covariant functor F : Loc→ Vec
(+ regularity conditions: local, microcausal, . . . ).
The generalized Lagrangian L which is a natural transformation
between functors D and Floc, s.t.: supp(LM(f )) ⊆ supp(f ), and
LM(•) is additive in f . The action S(L) is an equivalence class of
Lagrangians. We say that L1 ∼ L2 if:

supp(L1,M − L2,M)(f ) ⊂ supp df ∀M ∈ Loc, f ∈ D(M)
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Local vector fields

Vector fields X on E(M) (seen as a differentiable manifold) can
be considered as maps from E(M) to E(M).
We restrict ourselves to smooth maps X with compact support
and with image in Ec(M) (+ regularity conditions).
Vector fields act on F(M) as derivations,

X(F)(ϕ) = ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉

The space of such vector fields is denoted by V(M). V becomes
a (covariant) functor by setting: Vχ(X) = Ecχ ◦ X ◦ Eχ .

Antifields

Formally we can write: X =

∫
dx X(x)

δ

δϕ(x)
. We can therefore

identify antifields as: ϕ‡ :=
δ

δϕ(x)
.

Katarzyna Rejzner The BV formalism applied to classical gravity 4 / 12



Preliminaries
Gravity

Conclusions
Statement of the problem
Equations of motion and symmetries

Local vector fields

Vector fields X on E(M) (seen as a differentiable manifold) can
be considered as maps from E(M) to E(M).
We restrict ourselves to smooth maps X with compact support
and with image in Ec(M) (+ regularity conditions).
Vector fields act on F(M) as derivations,

X(F)(ϕ) = ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉

The space of such vector fields is denoted by V(M). V becomes
a (covariant) functor by setting: Vχ(X) = Ecχ ◦ X ◦ Eχ .

Antifields

Formally we can write: X =

∫
dx X(x)

δ

δϕ(x)
. We can therefore

identify antifields as: ϕ‡ :=
δ

δϕ(x)
.

Katarzyna Rejzner The BV formalism applied to classical gravity 4 / 12



Preliminaries
Gravity

Conclusions
Statement of the problem
Equations of motion and symmetries

Local vector fields

Vector fields X on E(M) (seen as a differentiable manifold) can
be considered as maps from E(M) to E(M).
We restrict ourselves to smooth maps X with compact support
and with image in Ec(M) (+ regularity conditions).
Vector fields act on F(M) as derivations,

X(F)(ϕ) = ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉

The space of such vector fields is denoted by V(M). V becomes
a (covariant) functor by setting: Vχ(X) = Ecχ ◦ X ◦ Eχ .

Antifields

Formally we can write: X =

∫
dx X(x)

δ

δϕ(x)
. We can therefore

identify antifields as: ϕ‡ :=
δ

δϕ(x)
.

Katarzyna Rejzner The BV formalism applied to classical gravity 4 / 12



Preliminaries
Gravity

Conclusions
Statement of the problem
Equations of motion and symmetries

Local vector fields

Vector fields X on E(M) (seen as a differentiable manifold) can
be considered as maps from E(M) to E(M).
We restrict ourselves to smooth maps X with compact support
and with image in Ec(M) (+ regularity conditions).
Vector fields act on F(M) as derivations,

X(F)(ϕ) = ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉

The space of such vector fields is denoted by V(M). V becomes
a (covariant) functor by setting: Vχ(X) = Ecχ ◦ X ◦ Eχ .

Antifields

Formally we can write: X =

∫
dx X(x)

δ

δϕ(x)
. We can therefore

identify antifields as: ϕ‡ :=
δ

δϕ(x)
.

Katarzyna Rejzner The BV formalism applied to classical gravity 4 / 12



Preliminaries
Gravity

Conclusions
Statement of the problem
Equations of motion and symmetries

Equations of motion and symmetries

The EL derivative of S is a natural transformation S′ : E→ D′

defined by:
〈
S′M(ϕ), h

〉
=
〈

LM(f )(1)(ϕ), h
〉

with f ≡ 1 on

supph. The field equation is: S′M(ϕ) = 0.
A vector field X ∈ V(M) is called a symmetry of the action S if
it holds:

∀ϕ ∈ E(M) : 0 =
〈
S′M(ϕ),X(ϕ)

〉
= ∂X(SM)(ϕ) =: δS(X)(ϕ).

Space of solutions: ES(M) ⊂ E(M). Functionals that vanish on
ES(M): F0(M). Assume that they are of the form: δS(X) for
some X ∈ V(M).
Symmetries constitute the kernel of δS.

We obtain a resolution: 0→ Symm. ↪→ V(M)
δS−→ F(M)→ 0.

Functionals on ES(M): FS(M)
.
= F(M)/F0(M) = H0(δS).

A symmetry X is called trivial if: X(F) ∈ F0(M) ∀F ∈ F(M).
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Action and symmetries

The configuration space is E(M) = (T∗M)⊗2 .
= T0

2 M, the space
of rank (0, 2) tensors.

Let g be the background metric, h ∈ E(M) the infinitesimal
perturbation and g̃ = g + h. The Einstein-Hilbert Lagrangian

reads: L(M,g)(f )(h)
.
=

∫
R[g̃] f d vol(M,g̃).

The symmetry group is the diffeomorphism group Diff(M). It
can be treated as an infinite dimensional Lie group modeled on
Xc(M), the space of compactly supported vector fields on M.

The most general nontrivial symmetries can be written as
elements of G(M) := C∞ml(E(M),Xc(M)).

Subscript "ml" denotes the multilocal maps, i.e. algebraic
completion of the space of local ones as F(M)-module.
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Action and symmetries

The action ρ of G(M) on F ∈ F(M) can be written as:
ρM(Q)(h) =

〈
F(1)(h),−LQ(h)g̃

〉
The full BV complex for a fixed background reads:

BV(M) = C∞ml

(
E(M),

∧
Ec(M) ⊗̂

∧
g′(M) ⊗̂ S•gc(M)

)
Antifields: #af = 1, #gh = −1

Ghosts: #af = 0, #gh = 1

Antifields of ghosts: #af = 2, #gh = −2
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BV complex

We expand s wrt antifield number: s = s(−1) + s(0), where:
s( -1) is the K-T differential providing the resolution of CES(M):

. . .→ Λ2V⊕G
δS⊕ρ−−−→ V

δS−→ F→ 0
s(0) is the Chevalley-Eilenberg differential on
CES(M) = C∞ml (ES(M),Λg′(M)).

We obtain a double complex:

s( -1)
−−−−→

(
Λ2V⊕G

) s( -1)
−−−−→ V

s( -1)
−−−−→ Fys(0)

ys(0)

ys(0)

s( -1)
−−−−→ C∞ml

(
E,(Λ2Ec⊕gc)⊗̂g′

) s( -1)
−−−−→ C∞ml

(
E,Ec⊗̂g′

) s( -1)
−−−−→ C∞ml

(
E, g′

)
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BV complex extended to natural transformations

The gauge invariant observables are given by:

H0(BV(M), s) = H0(CES(M), s(0)) = Finv
S (M)

Problem
On the fixed background the cohomology is trivial.

Solution

We define the extended algebra of fields as: Fld =

∞⊕
k=0

Nat(Ek
c,BV).

The action of symmetries on natural transformations Φ ∈ Nat(Ec,F):

(ρM(X)ΦM)(f ) := ∂ρM(X)(ΦM(f )) + ΦM(ρM(X)f ), X ∈ X(M) .
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BV complex extended to natural transformations

The set Fld becomes a graded algebra if we equip it with a
graded product defined as:

(ΦΨ)M(f1, ..., fp+q) =

=
1

p!q!

∑
π∈Pp+q

ΦM(fπ(1), ..., fπ(p))ΨM(fπ(p+1), ..., fπ(p+q)) .

The BV-differential on Fld is now given by:
(sΦ)M(f ) := s0(ΦM(f )) + (−1)|Φ|ΦM(ρM(.)f ),

where s0 is the BV differential on the fixed background.
The 0-cohomology of s is nontrivial, since it contains for
example the Riemann tensor contracted with itself, smeared with
a test function:
Φ(M,g)(f )(h) =

∫
M

Rµναβ [g̃]Rµναβ [g̃]fdvol(M,g̃) g̃ = g + h .
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Conclusions

We gave a geometrical interpretation of the BV formalism.

The construction was formulated in a covariant way and
generalized to the natural transformations.

In general relativity the basic physical objects are fields (natural
transformations), since they are defined not on a fixed
background but rather on a class of spacetimes in a coherent way.

The BV differential can be defined on the algebra of fields Fld
and gives a homological interpretation to the notion of gauge
invariant physical quantities in general relativity.
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