The BV formalism applied to classical gravity

Katarzyna Rejzner ${ }^{1}$

II. Institute for Theoretical Physics

Karlsruhe, 29.03.2011
${ }^{1}$ based on the joint work with prof. Klaus Fredenhagen

Based on

Based on

- K. Fredenhagen, K. R.,

Batalin-Vilkovisky formalism in the functional approach to classical field theory, [arXiv:math-ph/1101.5112].

- K. Fredenhagen, K. R., Local
covariance and background
independence,
[arXiv:math-ph/1102.2376].

- R. Brunetti, K. Fredenhagen Towards a

Background Independent Formulation of
Perturbative Quantum Gravity,
[arXiv:gr-qc/0603079v3].

Based on

- K. Fredenhagen, K. R.,

Batalin-Vilkovisky formalism in the functional approach to classical field theory, [arXiv:math-ph/1101.5112].

- K. Fredenhagen, K. R., Local
covariance and background
independence,
[arXiv:math-ph/1102.2376].

- R. Brunetti, K. Fredenhagen Towards a Background Independent Formulation of Perturbative Quantum Gravity, [arXiv:gr-qc/0603079v3].

Based on

- K. Fredenhagen, K. R., Batalin-Vilkovisky formalism in the functional approach to classical field theory, [arXiv:math-ph/1101.5112].
- K. Fredenhagen, K. R., Local
covariance and background independence,

- R. Brunetti, K. Fredenhagen Towards a Background Independent Formulation of Perturbative Quantum Gravity, [arXiv:gr-qc/0603079v3].

Based on

- K. Fredenhagen, K. R., Batalin-Vilkovisky formalism in the functional approach to classical field theory, [arXiv:math-ph/1101.5112].
- K. Fredenhagen, K. R., Local
covariance and background independence,
 [arXiv:math-ph/1102.2376].
- R. Brunetti, K. Fredenhagen Towards a

Background Independent Formulation of Perturbative Quantum Gravity, [arXiv:gr-qc/0603079v3].

Based on

- K. Fredenhagen, K. R.,

Batalin-Vilkovisky formalism in the functional approach to classical field theory, [arXiv:math-ph/1101.5112].

- K. Fredenhagen, K. R., Local covariance and background independence,
 [arXiv:math-ph/1102.2376].
- R. Brunetti, K. Fredenhagen Towards a Background Independent Formulation of Perturbative Quantum Gravity, [arXiv:gr-qc/0603079v3].

Outline of the talk

(1) Preliminaries

- Statement of the problem
- Equations of motion and symmetries
(2) Gravity
- Action and symmetries
- BV construction on a fixed background
- BV construction for natural transformations

Statement of the problem

In our formulation with a physical system we associate:

- The configurations space $\mathfrak{E}(M)$ of all fields of the theory. \mathfrak{E} is a contravariant functor from Loc (spacetimes) to Vec (lcvs).
- The space of compactly supported fields $\mathfrak{E}_{c}(M)$. \mathfrak{E}_{C} is a covariant functor from Loc to Vec.
- $\mathfrak{D}:$ Loc \rightarrow Vec a covariant functor that assigns to M the space of compactly supported test functions $\mathfrak{D}(M)$.
- The space of smooth, compactly supported functionals on $\mathfrak{E}(M)$ This assignment also defines a covariant functor $\mathfrak{F}:$ Loc \rightarrow Vec (+ regularity conditions: local, microcausal,
- The generalized Lagrangian L which is a natural transformation between functors \mathfrak{D} and $\mathfrak{F}_{\text {loc }}$, s.t.: $\operatorname{supp}\left(L_{M}(f)\right) \subseteq \operatorname{supp}(f)$, and $L_{M}(\bullet)$ is additive in f. The action $S(L)$ is an equivalence class of Lagrangians. We say that $L_{1} \sim L_{2}$ if:

Statement of the problem

In our formulation with a physical system we associate:

- The configurations space $\mathfrak{E}(M)$ of all fields of the theory. \mathfrak{E} is a contravariant functor from Loc (spacetimes) to Vec (lcvs).
- The space of compactly supported fields $\mathfrak{E}_{c}(M)$. \mathfrak{E}_{c} is a covariant functor from Loc to Vec.
- $\mathfrak{D}:$ Loc \rightarrow Vec a covariant functor that assigns to M the space of compactly supported test functions $\mathfrak{D}(M)$.
- The space of smooth, compactly supported functionals on $\mathbb{E}(M)$ This assignment also defines a covariant functor $\mathfrak{F}: L o c \rightarrow$ Vec (+ regularity conditions: local, microcausal,
- The generalized Lagrangian L which is a natural transformation between functors $\left(D\right.$ and $\mathfrak{F}_{\text {loc }}$, s.t.: $\operatorname{supp}\left(L_{M}(f)\right) \subseteq \operatorname{supp}(f)$, and $L_{M}(\bullet)$ is additive in f. The action $S(L)$ is an equivalence class of Lagrangians. We say that $L_{1} \sim L_{2}$ if:

Statement of the problem

In our formulation with a physical system we associate:

- The configurations space $\mathfrak{E}(M)$ of all fields of the theory. \mathfrak{E} is a contravariant functor from Loc (spacetimes) to Vec (lcvs).
- The space of compactly supported fields $\mathfrak{E}_{c}(M) . \mathfrak{E}_{c}$ is a covariant functor from Loc to Vec.
- $\mathfrak{D}:$ Loc \rightarrow Vec a covariant functor that assigns to M the space of compactly supported test functions $\mathfrak{D}(M)$.
- The space of smooth, compactly supported functionals on $\mathfrak{E}(M)$ This assignment also defines a covariant functor $\mathfrak{F}:$ Loc \rightarrow Vec (+ regularity conditions: local, microcausal,
- The generalized Lagrangian L which is a natural transformation between functors \mathfrak{D} and $\mathfrak{F}_{\text {loc }}$, s.t.: $\operatorname{supp}\left(L_{M}(f)\right) \subseteq \operatorname{supp}(f)$, and $L_{M}(\bullet)$ is additive in f. The action $S(L)$ is an equivalence class of Lagrangians. We say that $L_{1} \sim L_{2}$ if:

Statement of the problem

In our formulation with a physical system we associate:

- The configurations space $\mathfrak{E}(M)$ of all fields of the theory. \mathfrak{E} is a contravariant functor from Loc (spacetimes) to Vec (lcvs).
- The space of compactly supported fields $\mathfrak{E}_{c}(M)$. \mathfrak{E}_{c} is a covariant functor from Loc to Vec.
- $\mathfrak{D}:$ Loc \rightarrow Vec a covariant functor that assigns to M the space of compactly supported test functions $\mathfrak{D}(M)$.
- The space of smooth, compactly supported functionals on $\mathfrak{E}(M)$. This assignment also defines a covariant functor $\mathfrak{F}:$ Loc \rightarrow Vec (+ regularity conditions: local, microcausal, ...).
- The generalized Lagrangian L which is a natural transformation between functors \mathfrak{D} and $\mathfrak{F}_{\text {loc }}$, s.t.: $\operatorname{supp}\left(L_{M}(f)\right) \subseteq \operatorname{supp}(f)$, and $L_{M}(\bullet)$ is additive in f. The action $S(L)$ is an equivalence class of Lagrangians. We say that $L_{1} \sim L_{2}$ if:

Statement of the problem

In our formulation with a physical system we associate:

- The configurations space $\mathfrak{E}(M)$ of all fields of the theory. \mathfrak{E} is a contravariant functor from Loc (spacetimes) to Vec (lcvs).
- The space of compactly supported fields $\mathfrak{E}_{c}(M)$. \mathfrak{E}_{c} is a covariant functor from Loc to Vec.
- $\mathfrak{D}:$ Loc \rightarrow Vec a covariant functor that assigns to M the space of compactly supported test functions $\mathfrak{D}(M)$.
- The space of smooth, compactly supported functionals on $\mathfrak{E}(M)$. This assignment also defines a covariant functor $\mathfrak{F}:$ Loc \rightarrow Vec (+ regularity conditions: local, microcausal, ...).
- The generalized Lagrangian L which is a natural transformation between functors \mathfrak{D} and $\mathfrak{F}_{\text {loc }}$, s.t.: $\operatorname{supp}\left(L_{M}(f)\right) \subseteq \operatorname{supp}(f)$, and $L_{M}(\bullet)$ is additive in f. The action $S(L)$ is an equivalence class of Lagrangians. We say that $L_{1} \sim L_{2}$ if:

$$
\operatorname{supp}\left(L_{1, M}-L_{2, M}\right)(f) \subset \operatorname{supp} d f \quad \forall M \in \mathbf{L o c}, f \in \mathfrak{D}(M)
$$

Local vector fields

- Vector fields X on $\mathfrak{E}(M)$ (seen as a differentiable manifold) can be considered as maps from $\mathfrak{E}(M)$ to $\mathfrak{E}(M)$.
- We restrict ourselves to smooth maps X with compact support and with image in $\mathfrak{E}_{c}(M)$ (+ regularity conditions).
- Vector fields act on $\mathfrak{F}(M)$ as derivations,

The space of such vector fields is denoted by $\mathfrak{V}(M) \cdot \mathfrak{V}$ becomes a (covariant) functor by setting: $\mathfrak{V} \chi(X)=\mathfrak{E}_{c} \chi \circ X \circ \mathfrak{E} \chi$

Local vector fields

- Vector fields X on $\mathfrak{E}(M)$ (seen as a differentiable manifold) can be considered as maps from $\mathfrak{E}(M)$ to $\mathfrak{E}(M)$.
- We restrict ourselves to smooth maps X with compact support and with image in $\mathfrak{E}_{c}(M)$ (+ regularity conditions).

The space of such vector fields is denoted by $\mathfrak{V}(M)$. \mathfrak{V} becomes a (covariant) functor by setting: $\mathfrak{V} \chi(X)=\mathfrak{E}_{c} \chi \circ X \circ \mathfrak{E} \chi$

Local vector fields

- Vector fields X on $\mathfrak{E}(M)$ (seen as a differentiable manifold) can be considered as maps from $\mathfrak{E}(M)$ to $\mathfrak{E}(M)$.
- We restrict ourselves to smooth maps X with compact support and with image in $\mathfrak{E}_{c}(M)$ (+ regularity conditions).
- Vector fields act on $\mathfrak{F}(M)$ as derivations,

$$
X(F)(\varphi)=\partial_{X} F(\varphi):=\left\langle F^{(1)}(\varphi), X(\varphi)\right\rangle
$$

The space of such vector fields is denoted by $\mathfrak{V}(M)$. \mathfrak{V} becomes a (covariant) functor by setting: $\mathfrak{V} \chi(X)=\mathfrak{E}_{c} \chi \circ X \circ \mathfrak{E} \chi$.
\square
Antifields
Formally we can write: $X=\int d x X(x) \frac{\delta}{\delta \varphi(x)}$. We can therefore

Local vector fields

- Vector fields X on $\mathfrak{E}(M)$ (seen as a differentiable manifold) can be considered as maps from $\mathfrak{E}(M)$ to $\mathfrak{E}(M)$.
- We restrict ourselves to smooth maps X with compact support and with image in $\mathfrak{E}_{c}(M)$ (+ regularity conditions).
- Vector fields act on $\mathfrak{F}(M)$ as derivations,

$$
X(F)(\varphi)=\partial_{X} F(\varphi):=\left\langle F^{(1)}(\varphi), X(\varphi)\right\rangle
$$

The space of such vector fields is denoted by $\mathfrak{V}(M) \cdot \mathfrak{V}$ becomes a (covariant) functor by setting: $\mathfrak{V} \chi(X)=\mathfrak{E}_{c} \chi \circ X \circ \mathfrak{E} \chi$.

Antifields

Formally we can write: $X=\int d x X(x) \frac{\delta}{\delta \varphi(x)}$. We can therefore identify antifields as: $\varphi^{\ddagger}:=\frac{\delta}{\delta \varphi(x)}$.

Equations of motion and symmetries

- The EL derivative of S is a natural transformation $S^{\prime}: \mathfrak{E} \rightarrow \mathfrak{D}^{\prime}$ defined by: $\left\langle S_{M}^{\prime}(\varphi), h\right\rangle=\left\langle L_{M}(f)^{(1)}(\varphi), h\right\rangle$ with $f \equiv 1$ on supph. The field equation is: $S_{M}^{\prime}(\varphi)=0$.
- A vector field $X \in \mathfrak{D}(M)$ is called a symmetry of the action S if it holds:

$$
\forall_{\varphi} \varphi \in \mathfrak{E}(M)
$$

- Space of solutions: $\mathfrak{E}_{S}(M) \subset \mathfrak{E}(M)$. Functionals that vanish on $\mathfrak{E}_{S}(M): \mathfrak{F}_{0}(M)$. Assume that they are of the form: $\delta_{S}(X)$ for some $X \in \mathfrak{V}(M)$.
- Symmetries constitute the kernel of δ_{S}.
- We obtain a resolution: $0 \rightarrow$ Symm. $\hookrightarrow \mathfrak{V}(M) \xrightarrow{\delta_{s}} \mathfrak{F}(M) \rightarrow 0$.
- Functionals on $\mathfrak{E}_{S}(M): \mathfrak{F}_{S}(M) \doteq \mathfrak{F}(M) / \mathfrak{F}_{0}(M)=H_{0}\left(\delta_{S}\right)$. - A symmetry X is called trivial if: $X(F) \in \mathfrak{F}_{0}(M) \forall F \in \mathfrak{F}(M)$.

Equations of motion and symmetries

- The EL derivative of S is a natural transformation $S^{\prime}: \mathfrak{E} \rightarrow \mathfrak{D}^{\prime}$ defined by: $\left\langle S_{M}^{\prime}(\varphi), h\right\rangle=\left\langle L_{M}(f)^{(1)}(\varphi), h\right\rangle$ with $f \equiv 1$ on supph. The field equation is: $S_{M}^{\prime}(\varphi)=0$.
- A vector field $X \in \mathfrak{V}(M)$ is called a symmetry of the action S if it holds:

$$
\forall \varphi \in \mathfrak{E}(M): 0=\left\langle S_{M}^{\prime}(\varphi), X(\varphi)\right\rangle=\partial_{X}\left(S_{M}\right)(\varphi)=: \delta_{S}(X)(\varphi) .
$$

- Space of solutions: $\mathfrak{E}_{S}(M) \subset \mathfrak{E}(M)$. Functionals that vanish on $\mathfrak{E}_{S}(M)$: $\mathfrak{F}_{0}(M)$. Assume that they are of the form: $\delta_{S}(X)$ for some $X \in \mathfrak{V}(M)$.
- Symmetries constitute the kernel of δ_{S}.
- We obtain a resolution: $0 \rightarrow S y m m . ~ \mathfrak{S}(M) \xrightarrow{\delta_{S}} \mathfrak{F}(M) \rightarrow 0$.
- Functionals on $\mathfrak{E}_{S}(M)$:
- A symmetry X is called trivial if: $X(F) \in \mathfrak{F}_{0}(M) \forall F \in \mathfrak{F}(M)$.

Equations of motion and symmetries

- The EL derivative of S is a natural transformation $S^{\prime}: \mathfrak{E} \rightarrow \mathfrak{D}^{\prime}$ defined by: $\left\langle S_{M}^{\prime}(\varphi), h\right\rangle=\left\langle L_{M}(f)^{(1)}(\varphi), h\right\rangle$ with $f \equiv 1$ on supph. The field equation is: $S_{M}^{\prime}(\varphi)=0$.
- A vector field $X \in \mathfrak{V}(M)$ is called a symmetry of the action S if it holds:

$$
\forall \varphi \in \mathfrak{E}(M): 0=\left\langle S_{M}^{\prime}(\varphi), X(\varphi)\right\rangle=\partial_{X}\left(S_{M}\right)(\varphi)=: \delta_{S}(X)(\varphi) .
$$

- Space of solutions: $\mathfrak{E}_{S}(M) \subset \mathfrak{E}(M)$. Functionals that vanish on $\mathfrak{E}_{S}(M): \mathfrak{F}_{0}(M)$. Assume that they are of the form: $\delta_{S}(X)$ for some $X \in \mathfrak{V}(M)$.
- Symmetries constitute the kernel of δ_{S}.
- We obtain a resolution: 0
- Functionals on $\mathfrak{F}_{S}(\boldsymbol{M}) \cdot \mathfrak{F}_{S}(M)=\mathcal{F}(M) / \mathcal{F}_{0}(M)=H_{0}\left(\delta_{S}\right)$.
A symmetry X is called trivial if: $X(F) \in \mathcal{F}_{0}(M) \forall F \in \mathcal{F}(M)$

Equations of motion and symmetries

- The EL derivative of S is a natural transformation $S^{\prime}: \mathfrak{E} \rightarrow \mathfrak{D}^{\prime}$ defined by: $\left\langle S_{M}^{\prime}(\varphi), h\right\rangle=\left\langle L_{M}(f)^{(1)}(\varphi), h\right\rangle$ with $f \equiv 1$ on supph. The field equation is: $S_{M}^{\prime}(\varphi)=0$.
- A vector field $X \in \mathfrak{V}(M)$ is called a symmetry of the action S if it holds:

$$
\forall \varphi \in \mathfrak{E}(M): 0=\left\langle S_{M}^{\prime}(\varphi), X(\varphi)\right\rangle=\partial_{X}\left(S_{M}\right)(\varphi)=: \delta_{S}(X)(\varphi) .
$$

- Space of solutions: $\mathfrak{E}_{S}(M) \subset \mathfrak{E}(M)$. Functionals that vanish on $\mathfrak{E}_{S}(M): \mathfrak{F}_{0}(M)$. Assume that they are of the form: $\delta_{S}(X)$ for some $X \in \mathfrak{V}(M)$.
- Symmetries constitute the kernel of δ_{S}.
- We obtain a resolution:
- Functionals on $\mathfrak{E}_{S}(M): \mathfrak{F}_{S}(M) \doteq \mathscr{F}(M) / \mathfrak{F}_{0}(M)=H_{0}\left(\delta_{S}\right)$.
- A symmetry X is called trivial if: $X(F) \in \mathfrak{F}_{0}(M) \forall F \in \mathfrak{F}(M)$

Equations of motion and symmetries

- The EL derivative of S is a natural transformation $S^{\prime}: \mathfrak{E} \rightarrow \mathfrak{D}^{\prime}$ defined by: $\left\langle S_{M}^{\prime}(\varphi), h\right\rangle=\left\langle L_{M}(f)^{(1)}(\varphi), h\right\rangle$ with $f \equiv 1$ on supph. The field equation is: $S_{M}^{\prime}(\varphi)=0$.
- A vector field $X \in \mathfrak{V}(M)$ is called a symmetry of the action S if it holds:

$$
\forall \varphi \in \mathfrak{E}(M): 0=\left\langle S_{M}^{\prime}(\varphi), X(\varphi)\right\rangle=\partial_{X}\left(S_{M}\right)(\varphi)=: \delta_{S}(X)(\varphi) .
$$

- Space of solutions: $\mathfrak{E}_{S}(M) \subset \mathfrak{E}(M)$. Functionals that vanish on $\mathfrak{E}_{S}(M): \mathfrak{F}_{0}(M)$. Assume that they are of the form: $\delta_{S}(X)$ for some $X \in \mathfrak{V}(M)$.
- Symmetries constitute the kernel of δ_{S}.
- We obtain a resolution: $0 \rightarrow$ Symm. $\hookrightarrow \mathfrak{V}(M) \xrightarrow{\delta_{S}} \mathfrak{F}(M) \rightarrow 0$.
- Functionals on שES (M) - A symmetry X is called trivial if: $X(F) \in \mathfrak{F}_{0}(M) \forall F \in \mathfrak{F}(M)$.

Equations of motion and symmetries

- The EL derivative of S is a natural transformation $S^{\prime}: \mathfrak{E} \rightarrow \mathfrak{D}^{\prime}$ defined by: $\left\langle S_{M}^{\prime}(\varphi), h\right\rangle=\left\langle L_{M}(f)^{(1)}(\varphi), h\right\rangle$ with $f \equiv 1$ on supph. The field equation is: $S_{M}^{\prime}(\varphi)=0$.
- A vector field $X \in \mathfrak{V}(M)$ is called a symmetry of the action S if it holds:

$$
\forall \varphi \in \mathfrak{E}(M): 0=\left\langle S_{M}^{\prime}(\varphi), X(\varphi)\right\rangle=\partial_{X}\left(S_{M}\right)(\varphi)=: \delta_{S}(X)(\varphi)
$$

- Space of solutions: $\mathfrak{E}_{S}(M) \subset \mathfrak{E}(M)$. Functionals that vanish on $\mathfrak{E}_{S}(M): \mathfrak{F}_{0}(M)$. Assume that they are of the form: $\delta_{S}(X)$ for some $X \in \mathfrak{V}(M)$.
- Symmetries constitute the kernel of δ_{S}.
- We obtain a resolution: $0 \rightarrow$ Symm. $\hookrightarrow \mathfrak{V}(M) \xrightarrow{\delta_{S}} \mathfrak{F}(M) \rightarrow 0$.
- Functionals on $\mathfrak{E}_{S}(M): \mathfrak{F}_{S}(M) \doteq \mathfrak{F}(M) / \mathfrak{F}_{0}(M)=H_{0}\left(\delta_{S}\right)$.

Equations of motion and symmetries

- The EL derivative of S is a natural transformation $S^{\prime}: \mathfrak{E} \rightarrow \mathfrak{D}^{\prime}$ defined by: $\left\langle S_{M}^{\prime}(\varphi), h\right\rangle=\left\langle L_{M}(f)^{(1)}(\varphi), h\right\rangle$ with $f \equiv 1$ on supph. The field equation is: $S_{M}^{\prime}(\varphi)=0$.
- A vector field $X \in \mathfrak{V}(M)$ is called a symmetry of the action S if it holds:

$$
\forall \varphi \in \mathfrak{E}(M): 0=\left\langle S_{M}^{\prime}(\varphi), X(\varphi)\right\rangle=\partial_{X}\left(S_{M}\right)(\varphi)=: \delta_{S}(X)(\varphi) .
$$

- Space of solutions: $\mathfrak{E}_{S}(M) \subset \mathfrak{E}(M)$. Functionals that vanish on $\mathfrak{E}_{S}(M): \mathfrak{F}_{0}(M)$. Assume that they are of the form: $\delta_{S}(X)$ for some $X \in \mathfrak{V}(M)$.
- Symmetries constitute the kernel of δ_{S}.
- We obtain a resolution: $0 \rightarrow$ Symm. $\hookrightarrow \mathfrak{V}(M) \xrightarrow{\delta_{S}} \mathfrak{F}(M) \rightarrow 0$.
- Functionals on $\mathfrak{E}_{S}(M): \mathfrak{F} S(M) \doteq \mathfrak{F}(M) / \mathfrak{F}_{0}(M)=H_{0}\left(\delta_{S}\right)$.
- A symmetry X is called trivial if: $X(F) \in \mathfrak{F}_{0}(M) \forall F \in \mathfrak{F}(M)$.

Action and symmetries

- The configuration space is $\mathfrak{E}(M)=\left(T^{*} M\right)^{\otimes 2} \doteq T_{2}^{0} M$, the space of rank $(0,2)$ tensors.
- Let g be the background metric, $h \in \mathfrak{E}(M)$ the infinitesimal perturbation and $\tilde{g}=g+h$. The Einstein-Hilbert Lagrangian reads: $L_{(M, .,)}(f)(h) \doteq R[\tilde{g}\rceil f \mathrm{~d}_{\operatorname{vol}}^{(M, \tilde{s})}$.
- The symmetry group is the diffeomorphism group $\operatorname{Diff}(M)$. It can be treated as an infinite dimensional Lie group modeled on $\mathfrak{X}_{c}(M)$, the space of compactly supported vector fields on M.
- The most general nontrivial symmetries can be written as elements of $\mathfrak{G}(M):=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \mathfrak{X}_{c}(M)\right)$.
- Subscript "ml" denotes the multilocal maps, i.e. algebraic completion of the space of local ones as $\mathfrak{F}(M)$-module.

Action and symmetries

- The configuration space is $\mathfrak{E}(M)=\left(T^{*} M\right)^{\otimes 2} \doteq T_{2}^{0} M$, the space of rank $(0,2)$ tensors.
- Let g be the background metric, $h \in \mathfrak{E}(M)$ the infinitesimal perturbation and $\tilde{g}=g+h$. The Einstein-Hilbert Lagrangian reads: $L_{(M, g)}(f)(h) \doteq \int R[\tilde{g}] f \mathrm{~d}_{\operatorname{vol}}^{(M, \tilde{g})}$.
- The symmetry group is the diffeomorphism group $\operatorname{Diff}(M)$. It can be treated as an infinite dimensional Lie group modeled on $\mathfrak{X}_{c}(M)$, the space of compactly supported vector fields on M.
- The most general nontrivial symmetries can be written as elements of $\mathfrak{G}(M):=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \mathfrak{X}_{c}(M)\right)$.
- Subscript "ml" denotes the multilocal maps, i.e. algebraic completion of the space of local ones as $\mathfrak{F}(M)$-module.

Action and symmetries

- The configuration space is $\mathfrak{E}(M)=\left(T^{*} M\right)^{\otimes 2} \doteq T_{2}^{0} M$, the space of rank $(0,2)$ tensors.
- Let g be the background metric, $h \in \mathfrak{E}(M)$ the infinitesimal perturbation and $\tilde{g}=g+h$. The Einstein-Hilbert Lagrangian reads: $L_{(M, g)}(f)(h) \doteq \int R[\tilde{g}] f \mathrm{~d}_{\operatorname{vol}}^{(M, \tilde{g})}$.
- The symmetry group is the diffeomorphism group $\operatorname{Diff}(M)$. It can be treated as an infinite dimensional Lie group modeled on $\mathfrak{X}_{c}(M)$, the space of compactly supported vector fields on M.
- The most general nontrivial symmetries can be written as elements of $\mathfrak{G}(M):=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \mathfrak{X}_{c}(M)\right)$.
Subscript " ml " denotes the multilocal maps, i.e. algebraic completion of the space of local ones as $\mathfrak{F}(M)$-module.

Action and symmetries

- The configuration space is $\mathfrak{E}(M)=\left(T^{*} M\right)^{\otimes 2} \doteq T_{2}^{0} M$, the space of rank $(0,2)$ tensors.
- Let g be the background metric, $h \in \mathfrak{E}(M)$ the infinitesimal perturbation and $\tilde{g}=g+h$. The Einstein-Hilbert Lagrangian reads: $L_{(M, g)}(f)(h) \doteq \int R[\tilde{g}] f \mathrm{~d}_{\operatorname{vol}}^{(M, \tilde{g})}$.
- The symmetry group is the diffeomorphism group $\operatorname{Diff}(M)$. It can be treated as an infinite dimensional Lie group modeled on $\mathfrak{X}_{c}(M)$, the space of compactly supported vector fields on M.
- The most general nontrivial symmetries can be written as elements of $\mathfrak{G}(M):=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \mathfrak{X}_{c}(M)\right)$.
- Subscript "ml" denotes the multilocal maps, i.e. algebraic completion of the space of local ones as $\mathfrak{F}(M)$-module.

Action and symmetries

- The configuration space is $\mathfrak{E}(M)=\left(T^{*} M\right)^{\otimes 2} \doteq T_{2}^{0} M$, the space of rank $(0,2)$ tensors.
- Let g be the background metric, $h \in \mathfrak{E}(M)$ the infinitesimal perturbation and $\tilde{g}=g+h$. The Einstein-Hilbert Lagrangian reads: $L_{(M, g)}(f)(h) \doteq \int R[\tilde{g}] f \mathrm{~d}_{\operatorname{vol}}^{(M, \tilde{g})}$.
- The symmetry group is the diffeomorphism group $\operatorname{Diff}(M)$. It can be treated as an infinite dimensional Lie group modeled on $\mathfrak{X}_{c}(M)$, the space of compactly supported vector fields on M.
- The most general nontrivial symmetries can be written as elements of $\mathfrak{G}(M):=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \mathfrak{X}_{c}(M)\right)$.
- Subscript "ml" denotes the multilocal maps, i.e. algebraic completion of the space of local ones as $\mathfrak{F}(M)$-module.

Action and symmetries

- The action ρ of $\mathfrak{G}(M)$ on $F \in \mathfrak{F}(M)$ can be written as:

$$
\rho_{M}(Q)(h)=\left\langle F^{(1)}(h), £_{Q(h)} \tilde{g}\right\rangle
$$

- The full BV complex for a fixed background reads:

$$
\mathfrak{B V}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \bigwedge \mathfrak{E}_{c}(M) \widehat{\otimes} \bigwedge \mathfrak{g}^{\prime}(M) \widehat{\otimes} S^{\bullet} \mathfrak{g}_{c}(M)\right)
$$

- Antifields: $\# \mathrm{af}=1, \# \mathrm{gh}=-1$
- Ghosts: $\# \mathrm{af}=0, \# \mathrm{gh}=1$
- Antifields of ghosts: $\# \mathrm{af}=2, \# \mathrm{gh}=-2$

Action and symmetries

- The action ρ of $\mathfrak{G}(M)$ on $F \in \mathfrak{F}(M)$ can be written as:

$$
\rho_{M}(Q)(h)=\left\langle F^{(1)}(h), £_{Q(h)} \tilde{g}\right\rangle
$$

- The full BV complex for a fixed background reads:

$$
\mathfrak{B V}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \bigwedge \mathfrak{E}_{c}(M) \widehat{\otimes} \bigwedge \mathfrak{g}^{\prime}(M) \widehat{\otimes} S^{\bullet} \mathfrak{g}_{c}(M)\right)
$$

- Antifields: $\# \mathrm{af}=1, \# \mathrm{gh}=-1$
- Ghosts: $\# \mathrm{af}=0, \# \mathrm{gh}=1$
- Antifields of ghosts: $\# \mathrm{af}=2, \# \mathrm{gh}=-2$

Action and symmetries

- The action ρ of $\mathfrak{G}(M)$ on $F \in \mathfrak{F}(M)$ can be written as:

$$
\rho_{M}(Q)(h)=\left\langle F^{(1)}(h), £_{Q(h)} \tilde{g}\right\rangle
$$

- The full BV complex for a fixed background reads:

$$
\mathfrak{B V}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \bigwedge \mathfrak{E}_{c}(M) \widehat{\otimes} \bigwedge \mathfrak{g}^{\prime}(M) \widehat{\otimes} S^{\bullet} \mathfrak{g}_{c}(M)\right)
$$

- Antifields: $\# \mathrm{af}=1, \# \mathrm{gh}=-1$
- Ghosts: $\# \mathrm{af}=0, \# \mathrm{gh}=1$
- Antifields of ghosts: $\# \mathrm{af}=2, \# \mathrm{gh}=-2$

Action and symmetries

- The action ρ of $\mathfrak{G}(M)$ on $F \in \mathfrak{F}(M)$ can be written as:

$$
\rho_{M}(Q)(h)=\left\langle F^{(1)}(h), £_{Q(h)} \tilde{g}\right\rangle
$$

- The full BV complex for a fixed background reads:

$$
\mathfrak{B V}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \bigwedge \mathfrak{E}_{c}(M) \widehat{\otimes} \bigwedge \mathfrak{g}^{\prime}(M) \widehat{\otimes} S^{\bullet} \mathfrak{g}_{c}(M)\right.
$$

- Antifields: $\# \mathrm{af}=1, \# \mathrm{gh}=-1$
- Ghosts: $\# \mathrm{af}=0, \# \mathrm{gh}=1$
- Antifields of ghosts: $\# \mathrm{af}=2, \# \mathrm{gh}=-2$

Action and symmetries

- The action ρ of $\mathfrak{G}(M)$ on $F \in \mathfrak{F}(M)$ can be written as:

$$
\rho_{M}(Q)(h)=\left\langle F^{(1)}(h), £_{Q(h)} \tilde{g}\right\rangle
$$

- The full BV complex for a fixed background reads:

$$
\mathfrak{B V}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}(M), \bigwedge \mathfrak{E}_{c}(M) \widehat{\otimes} \bigwedge \mathfrak{g}^{\prime}(M) \widehat{\otimes} S^{\bullet} \mathfrak{g}_{c}(M)\right)
$$

- Antifields: $\# \mathrm{af}=1, \# \mathrm{gh}=-1$
- Ghosts: $\# \mathrm{af}=0, \# \mathrm{gh}=1$
- Antifields of ghosts: $\# \mathrm{af}=2, \# \mathrm{gh}=-2$

BV complex

- We expand s wrt antifield number: $s=s^{(-1)}+s^{(0)}$, where:
- $s^{(0)}$ is the Chevalley-Eilenberg differential on $\mathfrak{C} \mathfrak{E}_{S}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}_{S}(M), \Lambda \mathfrak{g}^{\prime}(M)\right)$.
- We obtain a double complex:

BV complex

- We expand s wrt antifield number: $s=s^{(-1)}+s^{(0)}$, where:
- $s^{(-1)}$ is the K-T differential providing the resolution of $\mathfrak{C E}_{S}(M)$:

$$
\ldots \rightarrow \Lambda^{2} \mathfrak{V} \oplus \mathfrak{G} \xrightarrow{\delta_{s} \oplus \rho} \mathfrak{V} \xrightarrow{\delta_{S}} \mathfrak{F} \rightarrow 0
$$

- $s^{(0)}$ is the Chevalley-Eilenberg differential on $\mathfrak{C} \mathfrak{E}_{S}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}_{S}(M), \Lambda \mathfrak{g}^{\prime}(M)\right)$.

- We obtain a double complex:

BV complex

- We expand s wrt antifield number: $s=s^{(-1)}+s^{(0)}$, where:
- $s^{(-1)}$ is the K-T differential providing the resolution of $\mathfrak{C} E_{S}(M)$:

$$
\ldots \rightarrow \Lambda^{2} \mathfrak{V} \oplus \mathfrak{G} \xrightarrow{\delta_{s} \oplus \rho} \mathfrak{V} \xrightarrow{\delta_{S}} \mathfrak{F} \rightarrow 0
$$

- $s^{(0)}$ is the Chevalley-Eilenberg differential on $\mathfrak{C E}_{S}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}_{S}(M), \Lambda \mathfrak{g}^{\prime}(M)\right)$.
- We obtain a double complex:

BV complex

- We expand s wrt antifield number: $s=s^{(-1)}+s^{(0)}$, where:
- $s^{(-1)}$ is the K-T differential providing the resolution of $\mathfrak{C} E_{S}(M)$:

$$
\ldots \rightarrow \Lambda^{2} \mathfrak{V} \oplus \mathfrak{G} \xrightarrow{\delta_{s} \oplus \rho} \mathfrak{V} \xrightarrow{\delta_{S}} \mathfrak{F} \rightarrow 0
$$

- $s^{(0)}$ is the Chevalley-Eilenberg differential on $\mathfrak{C E}_{S}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}_{S}(M), \Lambda \mathfrak{g}^{\prime}(M)\right)$.
- We obtain a double complex:

BV complex

- We expand s wrt antifield number: $s=s^{(-1)}+s^{(0)}$, where:
- $s^{(-1)}$ is the K-T differential providing the resolution of $\mathfrak{C E}_{S}(M)$:

$$
\ldots \rightarrow \Lambda^{2} \mathfrak{V} \oplus \mathfrak{G} \xrightarrow{\delta_{s} \oplus \rho} \mathfrak{V} \xrightarrow{\delta_{S}} \mathfrak{F} \rightarrow 0
$$

- $s^{(0)}$ is the Chevalley-Eilenberg differential on $\mathfrak{C E}_{S}(M)=\mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}_{S}(M), \Lambda \mathfrak{g}^{\prime}(M)\right)$.
- We obtain a double complex:

$$
\begin{aligned}
& \begin{array}{cccc}
\xrightarrow{s^{(-1)}} & \begin{array}{c}
\left(\Lambda^{2} \mathfrak{V} \oplus \mathfrak{G}\right) \\
\downarrow_{s^{(0)}}
\end{array} & \xrightarrow{s^{(-1)}} & \mathfrak{V} \\
& \downarrow_{s^{(0)}} & & \mathfrak{F} \\
& & \downarrow^{(-1)}
\end{array} \\
& \xrightarrow{s^{(-1)}} \mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E},\left(\Lambda^{2} \mathfrak{E}_{c} \oplus \mathfrak{g}_{c}\right) \widehat{\otimes} \mathfrak{g}^{\prime}\right) \xrightarrow{s^{(-1)}} \mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}, \mathfrak{E}_{c} \widehat{\otimes} \mathfrak{g}^{\prime}\right) \xrightarrow{s^{(-1)}} \mathcal{C}_{\mathrm{ml}}^{\infty}\left(\mathfrak{E}, \mathfrak{g}^{\prime}\right)
\end{aligned}
$$

BV complex extended to natural transformations

The gauge invariant observables are given by:

$$
H^{0}(\mathfrak{B V}(M), s)=H^{0}\left(\mathfrak{C} \mathfrak{E}_{S}(M), s^{(0)}\right)=\mathfrak{F}_{S}^{\operatorname{inv}}(M)
$$

Problem

On the fixed background the cohomology is trivial.

Solution

We define the extended algebra of fields as: $F l d=\bigoplus \operatorname{Nat}\left(\mathfrak{E}_{c}^{k}, \mathfrak{B V}\right)$.
The action of symmetries on natural transformations $\Phi \in \operatorname{Nat}\left(\mathfrak{E}_{c}, \mathfrak{F}\right)$:

BV complex extended to natural transformations

The gauge invariant observables are given by:

$$
H^{0}(\mathfrak{B V}(M), s)=H^{0}\left(\mathfrak{C E} \mathfrak{E}_{S}(M), s^{(0)}\right)=\mathfrak{F}_{S}^{\text {inv }}(M)
$$

Problem

On the fixed background the cohomology is trivial.

Solution

We define the extended algebra of fields as: $F l d=\bigoplus^{\infty} \operatorname{Nat}\left(\mathfrak{E}_{c}^{k}, \mathfrak{B V}\right)$.
$k=0$
The action of symmetries on natural transformations $\Phi \in \operatorname{Nat}\left(\mathfrak{E}_{c}, \mathfrak{F}\right)$:

$$
\left(\rho_{M}(X) \Phi_{M}\right)(f):=\partial_{\rho_{M}(X)}\left(\Phi_{M}(f)\right)+\Phi_{M}\left(\rho_{M}(X) f\right), \quad X \in \mathfrak{X}(M)
$$

BV complex extended to natural transformations

- The set Fld becomes a graded algebra if we equip it with a graded product defined as:

$$
\begin{aligned}
& (\Phi \Psi)_{M}\left(f_{1}, \ldots, f_{p+q}\right)= \\
& \quad=\frac{1}{p!q!} \sum_{\pi \in P_{p+q}} \Phi_{M}\left(f_{\pi(1)}, \ldots, f_{\pi(p)}\right) \Psi_{M}\left(f_{\pi(p+1)}, \ldots, f_{\pi(p+q)}\right)
\end{aligned}
$$

- The BV-differential on Fld is now given by:
where s_{0} is the BV differential on the fixed background.
- The 0-cohomology of s is nontrivial, since it contains for example the Riemann tensor contracted with itself, smeared with a test function:

BV complex extended to natural transformations

- The set Fld becomes a graded algebra if we equip it with a graded product defined as:

$$
\begin{aligned}
& (\Phi \Psi)_{M}\left(f_{1}, \ldots, f_{p+q}\right)= \\
& \quad=\frac{1}{p!q!} \sum_{\pi \in P_{p+q}} \Phi_{M}\left(f_{\pi(1)}, \ldots, f_{\pi(p)}\right) \Psi_{M}\left(f_{\pi(p+1)}, \ldots, f_{\pi(p+q)}\right) .
\end{aligned}
$$

- The BV-differential on Fld is now given by:

$$
(s \Phi)_{M}(f):=s_{0}\left(\Phi_{M}(f)\right)+(-1)^{|\Phi|} \Phi_{M}\left(\rho_{M}(.) f\right)
$$

where s_{0} is the BV differential on the fixed background. example the Riemann tensor contracted with itself, smeared with a test function:

BV complex extended to natural transformations

- The set Fld becomes a graded algebra if we equip it with a graded product defined as:

$$
\begin{aligned}
& (\Phi \Psi)_{M}\left(f_{1}, \ldots, f_{p+q}\right)= \\
& \quad=\frac{1}{p!q!} \sum_{\pi \in P_{p+q}} \Phi_{M}\left(f_{\pi(1)}, \ldots, f_{\pi(p)}\right) \Psi_{M}\left(f_{\pi(p+1)}, \ldots, f_{\pi(p+q)}\right) .
\end{aligned}
$$

- The BV-differential on Fld is now given by:

$$
(s \Phi)_{M}(f):=s_{0}\left(\Phi_{M}(f)\right)+(-1)^{|\Phi|} \Phi_{M}\left(\rho_{M}(.) f\right)
$$

where s_{0} is the BV differential on the fixed background.

- The 0-cohomology of s is nontrivial, since it contains for example the Riemann tensor contracted with itself, smeared with a test function:

$$
\Phi_{(M, g)}(f)(h)=\int_{M} R_{\mu \nu \alpha \beta}[\tilde{g}] R^{\mu \nu \alpha \beta}[\tilde{g}] f d \operatorname{vol}_{(M, \tilde{g})} \quad \tilde{g}=g+h
$$

Conclusions

- We gave a geometrical interpretation of the BV formalism.
- The construction was formulated in a covariant way and generalized to the natural transformations.
- In general relativity the basic physical objects are fields (natural transformations), since they are defined not on a fixed background but rather on a class of spacetimes in a coherent way.
- The BV differential can be defined on the algebra of fields Fld and gives a homological interpretation to the notion of gauge invariant physical quantities in general relativity.

Conclusions

- We gave a geometrical interpretation of the BV formalism.
- The construction was formulated in a covariant way and generalized to the natural transformations.
- In general relativity the basic physical objects are fields (natural transformations), since they are defined not on a fixed background but rather on a class of spacetimes in a coherent way.
- The BV differential can be defined on the algebra of fields Fld and gives a homological interpretation to the notion of gauge invariant physical quantities in general relativity.

Conclusions

- We gave a geometrical interpretation of the BV formalism.
- The construction was formulated in a covariant way and generalized to the natural transformations.
- In general relativity the basic physical objects are fields (natural transformations), since they are defined not on a fixed background but rather on a class of spacetimes in a coherent way.
- The BV differential can be defined on the algebra of fields Fld and gives a homological interpretation to the notion of gauge invariant physical quantities in general relativity.

Conclusions

- We gave a geometrical interpretation of the BV formalism.
- The construction was formulated in a covariant way and generalized to the natural transformations.
- In general relativity the basic physical objects are fields (natural transformations), since they are defined not on a fixed background but rather on a class of spacetimes in a coherent way.
- The BV differential can be defined on the algebra of fields Fld and gives a homological interpretation to the notion of gauge invariant physical quantities in general relativity.

Thank you for your attention

