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The functional approach
Free scalar field

Interaction and renormalization

Motiviation: AQFT

A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

It started as the axiomatic framework of Haag-Kastler [Haag &

Kastler 64]: a model is defined by associating to each region O of
Minkowski spacetime (M .

= (R4, η) η = diag(1,−1,−1,−1)),
the C∗-algebra A(O) of observables that can be measured in O.

The physical notion of subsystems
is realized by the condition of isotony,
i.e.: O2 ⊃ O1 ⇒ A(O2) ⊃ A(O1).
We obtain a net of algebras.
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Perturbative QFT in the algebraic setting

We work perturbatively, so we have to drop the C∗ assumption.

Goal of today’s talk: define the renormalized quantum field
theory (QFT) as a net of noncommutative topological ∗-algebras
with an additional commutative product on it.
A complex ∗- algebra A is an algebra over the field of complex
numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A ∈ A under the involution is written
A∗. Involution is required to have the following properties:

1 For all A,B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2 For every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3 For all A ∈ A: (A∗)∗ = A.

Here, a topological ∗- algebra is a topological vector space,
which is a ∗- algebra and the product is sequentially continuous.

Kasia Rejzner pAQFT 3 / 26



The functional approach
Free scalar field

Interaction and renormalization

Perturbative QFT in the algebraic setting

We work perturbatively, so we have to drop the C∗ assumption.

Goal of today’s talk: define the renormalized quantum field
theory (QFT) as a net of noncommutative topological ∗-algebras
with an additional commutative product on it.

A complex ∗- algebra A is an algebra over the field of complex
numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A ∈ A under the involution is written
A∗. Involution is required to have the following properties:

1 For all A,B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2 For every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3 For all A ∈ A: (A∗)∗ = A.

Here, a topological ∗- algebra is a topological vector space,
which is a ∗- algebra and the product is sequentially continuous.

Kasia Rejzner pAQFT 3 / 26



The functional approach
Free scalar field

Interaction and renormalization

Perturbative QFT in the algebraic setting

We work perturbatively, so we have to drop the C∗ assumption.

Goal of today’s talk: define the renormalized quantum field
theory (QFT) as a net of noncommutative topological ∗-algebras
with an additional commutative product on it.
A complex ∗- algebra A is an algebra over the field of complex
numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A ∈ A under the involution is written
A∗. Involution is required to have the following properties:

1 For all A,B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2 For every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3 For all A ∈ A: (A∗)∗ = A.

Here, a topological ∗- algebra is a topological vector space,
which is a ∗- algebra and the product is sequentially continuous.

Kasia Rejzner pAQFT 3 / 26



The functional approach
Free scalar field

Interaction and renormalization

Perturbative QFT in the algebraic setting

We work perturbatively, so we have to drop the C∗ assumption.

Goal of today’s talk: define the renormalized quantum field
theory (QFT) as a net of noncommutative topological ∗-algebras
with an additional commutative product on it.
A complex ∗- algebra A is an algebra over the field of complex
numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A ∈ A under the involution is written
A∗. Involution is required to have the following properties:

1 For all A,B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,

2 For every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3 For all A ∈ A: (A∗)∗ = A.

Here, a topological ∗- algebra is a topological vector space,
which is a ∗- algebra and the product is sequentially continuous.

Kasia Rejzner pAQFT 3 / 26



The functional approach
Free scalar field

Interaction and renormalization

Perturbative QFT in the algebraic setting

We work perturbatively, so we have to drop the C∗ assumption.

Goal of today’s talk: define the renormalized quantum field
theory (QFT) as a net of noncommutative topological ∗-algebras
with an additional commutative product on it.
A complex ∗- algebra A is an algebra over the field of complex
numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A ∈ A under the involution is written
A∗. Involution is required to have the following properties:

1 For all A,B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2 For every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,

3 For all A ∈ A: (A∗)∗ = A.

Here, a topological ∗- algebra is a topological vector space,
which is a ∗- algebra and the product is sequentially continuous.

Kasia Rejzner pAQFT 3 / 26



The functional approach
Free scalar field

Interaction and renormalization

Perturbative QFT in the algebraic setting

We work perturbatively, so we have to drop the C∗ assumption.

Goal of today’s talk: define the renormalized quantum field
theory (QFT) as a net of noncommutative topological ∗-algebras
with an additional commutative product on it.
A complex ∗- algebra A is an algebra over the field of complex
numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A ∈ A under the involution is written
A∗. Involution is required to have the following properties:

1 For all A,B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2 For every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3 For all A ∈ A: (A∗)∗ = A.

Here, a topological ∗- algebra is a topological vector space,
which is a ∗- algebra and the product is sequentially continuous.

Kasia Rejzner pAQFT 3 / 26



The functional approach
Free scalar field

Interaction and renormalization

Perturbative QFT in the algebraic setting

We work perturbatively, so we have to drop the C∗ assumption.

Goal of today’s talk: define the renormalized quantum field
theory (QFT) as a net of noncommutative topological ∗-algebras
with an additional commutative product on it.
A complex ∗- algebra A is an algebra over the field of complex
numbers, together with a map, ∗ : A→ A, called an involution.
The image of an element A ∈ A under the involution is written
A∗. Involution is required to have the following properties:

1 For all A,B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2 For every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3 For all A ∈ A: (A∗)∗ = A.

Here, a topological ∗- algebra is a topological vector space,
which is a ∗- algebra and the product is sequentially continuous.

Kasia Rejzner pAQFT 3 / 26



The functional approach
Free scalar field

Interaction and renormalization

Physical input

Given a physical system, there is a natural way to construct this
net of topological ∗-algebras O 7→ A(O). Input from physics:

Spacetime M: a smooth manifold with a smooth
pseudo-Riemannian metric (a smooth section
g ∈ Γ(T∗M ⊗ T∗M), s.t. for every p ∈ M, gp is a symmetric non
degenerate bilinear form) of the Lorentz signature (we choose the
convention (+,−,−, ...,−)). We also assume M to be globally
hyperbolic (has a Cauchy surface).
Configuration space: space of smooth sections of some vector
bundle E π−→ M over M, for the scalar field: E(M) ≡ C∞(M,R).
Action: a map SM : D(M)→ C∞(E(M),R), where
D(M) ≡ C∞c (M,R) are compactly supported smooth functions.
An example action:

SM(f )(ϕ) =
1
2

∫
(∇µϕ∇µϕ− m2ϕ2)(x)f (x)dµ(x), where

f ∈ D(M) (cutoff), ϕ ∈ E(M), µ(x) is the volume form on M.
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Functionals

What is C∞(E(M),R)?

Let U ⊆ E(M) open and F : U → R. The derivative of F at ϕ in
the direction of h is defined as
F(1)(ϕ)(h)

.
= lim

t→0

1
t

(F(ϕ+ th)− F(ϕ)) (if exists)

F is called differentiable if F(1)(ϕ)(h) exists ∀ϕ ∈ U, h ∈ E(M).
It is called continuously differentiable (in the sense of Bastiani)
if it is differentiable on U and
F(1) : U × E(M)→ R, (ϕ, h) 7→ F(1)(ϕ)(h) is continuous.
F is Bastiani smooth if it is n-times continuously differentiable
for all n ∈ N.
The support of F ∈ C∞(E(M),R) is defined as:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M),

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .
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Equations of motion

The Euler-Lagrange derivative of SM is a map
S′M : E(M)→ D′(M) defined as〈
S′M(ϕ), h

〉
=
〈

LM(f )(1)(ϕ), h
〉

, where f ≡ 1 on supph.

Msupp(f )

supp(h)
f ≡ 1

The equation of motion (EOM) is the equation S′M(ϕ) ≡ 0 for an
unknown function ϕ ∈ E(M).

EOM determines a subspace of E(M) denoted by ES(M)
(on-shell configurations).
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Regularity conditions

F is local if it is of the form: F(ϕ) =

∫
M

f (jx(ϕ)) dµ(x) , where f

is a function on the jet bundle over M, jx(ϕ) is the jet of ϕ at x.

Let Floc(M) denote the space of local functionals and F(M) the
space of multilocal functionals (products of local ones).
In QFT we need more singular objects. How singular?
F(n)(ϕ) is an element of E′(Mn,R). We can impose some
regularity conditions on these distributions.

Definition

Let u ∈ D′(Ω), the wavefront set WF(u) is the complement in
Ω× Rn \ {0} of the set of (x, ξ) ∈ Ω× Rn \ {0} such that there exist
f ∈ D(Ω) with f (x) = 1 and an open conic neighborhood C of ξ, with

sup
ξ∈C

(1 + |ξ|)N |f̂ · u(ξ)| <∞ ∀N ∈ N0 .
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Interaction and renormalization

Abstractn notion of locality

Definition
A functional F ∈ C∞(E(M),R) is called additive if

F(ϕ1 + ϕ2 + ϕ3) = F(ϕ1 + ϕ2) + F(ϕ2 + ϕ3)− F(ϕ2) ,

for any triple ϕ1, ϕ2, ϕ3 such that suppϕ1 ∩ ϕ3 = ∅.

Theorem (C. Brouder, N.V. Dang, C. Laurent-Gengoux, KR)

Let U be an open subset of E(M) and F : U → R be smooth in the
sense of Bastiani. The following are equivalent:

1 F is additive and for every ϕ ∈ U, the differential F(1)(ϕ) has
empty WF set and the induced map F(1) : U → D(M) is Bastiani
smooth,

2 F is local.
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The functional approach
Free scalar field

Interaction and renormalization

Input from microlocal analysis

The Hörmander criterium allows us to
multiply distributions as long as the
elements of their WF-sets do not add up
to a zero section.

In a Lorentzian manifold there are some
distinguished directions in TM and T∗M
determined by the causal structure (i.e.
causal, spacelike, timelike).

Green’s functions of a normally
hyperbolic operator have some
particular singularities structure.

We use these facts to define the algebra
A(M) by introducing a ?-product on a
certain subspace of C∞(E(M),R).
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The functional approach
Free scalar field

Interaction and renormalization

Free scalar field

For the free scalar field the equation of motion is of the form
Pϕ = 0, where P = 2 + m2 is the Klein-Gordon operator.

Since M is globally hyperbolic, P posses the retarded and
advanced Green’s functions ∆R, ∆A. They satisfy:
P ◦∆R/A = idD(M), ∆R/A ◦ (P

∣∣
D(M)

) = idD(M) and

supp(∆R) ⊂ {(x, y) ∈ M2|y ∈ (V−)x} ,
supp(∆A) ⊂ {(x, y) ∈ M2|y ∈ (V+)x} .

supp f

supp ∆A(f )

supp ∆R(f )

Their difference is the causal propagator ∆
.
= ∆R −∆A.
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The functional approach
Free scalar field

Interaction and renormalization

Propagators and Green’s functions

WF(∆) = {(x, k; x′,−k′) ∈ Ṫ∗M2|(x, k) ∼ (x′, k′)}, where ∼
means that there is a causal curve connecting x and x′, and k′ is
the parallel transport of k along it.

We can always decompose ∆ to positive and negative frequency
parts: i

2∆ = ∆+ − H, i.e.:

WF(∆+) = {(x, k; x′,−k′) ∈ ṪM2|(x, k) ∼ (x′, k′), k ∈ (V+)x} ,

but this decomposition is not unique. ∆ is the antisymmetric part
of ∆+ and H is symmetric.
We can also define the Feynman propagator:

∆F =
i
2

(∆A + ∆R) + H .
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The functional approach
Free scalar field

Interaction and renormalization

?-product

Properties of the WF set of ∆+ motivate the following definition:

Definition
A functional F is called microcausal (F ∈ Fµc(M)) if

WF(F(n)(ϕ)) ⊂ Ξn, ∀n ∈ N, ∀ϕ ∈ E(M) ,

Ξn
.
= T∗Mn \ {(x1, ..., xn, k1, ...kn)|ki ∈ (V+)xi ∪ (V−)xi , i = 1...n}.

Define the ?-product (deformation of the pointwise product):

(F ? G)(ϕ)
.
=

∞∑
n=0

~n

n!

〈
F(n)(ϕ), (∆+)⊗nG(n)(ϕ)

〉
,

Introduce on Fµc(M) a topology τ that controls the WF sets of
the derivatives of functionals.
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The functional approach
Free scalar field

Interaction and renormalization

Net of ∗-algebras

Definition
The free QFT is defined by assigning to O ⊂ M

A0(O)
.
= (Fµc(O), τ, ?, ∗) ,

where F∗(ϕ)
.
= F(ϕ) and Fµc(O) is the space of microcausal

functionals supported in O.
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The functional approach
Free scalar field

Interaction and renormalization

Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are
test functions, i.e. F(n)(ϕ) ∈ D(Mn),

The time-ordering operator T is defined as:

TF(ϕ)
.
=

∞∑
n=0

~n

n!

〈
F(2n)(ϕ), (1

2∆F)⊗n
〉
,

Formally it would correspond to the operator of convolution with
the oscillating Gaussian measure “with covariance ~∆F”,

TF(ϕ)
formal

=

∫
F(ϕ− φ) dµ~∆F (φ) .

Define the time-ordered product ·T on Freg(M)[[~]] by:

F ·T G .
= T(T−1F · T−1G)
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The functional approach
Free scalar field

Interaction and renormalization

Interaction

We now have an algebraic structure with two products
(Freg(M)[[~]], ?, ·T), where ? is non-commutative, ·T is
commutative and they are related by a causal relation:

F ·T G = F ? G ,

if suppF is later than suppG. Hence the name “time-ordered”.

Interaction is a functional V ∈ Freg(M). Using the commutative
product ·T we define the S-matrix:

S(V)
.
= eV

T = T(eT
−1V) .

Interacting fields are defined by the formula of Bogoliubov:

RV(F)
.
= (eV

T )?−1 ? (eV
T ·T F) .

Because of the WF set properties of ∆F, the time-ordered
product ·T is not well defined on local, non-constant functionals,
but the physical interaction is usually local!
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The functional approach
Free scalar field

Interaction and renormalization

Renormalization problem

Renormalization problem: extend S(.) to local arguments. This
is reduced to extending the n-fold time-ordered products, since
we can define:

S(V) =

∞∑
n=0

1
n!
T n(V, ...,V) .

The time-ordered product T n(F1, ...,Fn)
.
= F1 ·T ... ·T Fn of n

local functionals is well defined if their supports are pairwise
disjoint.

To extend T n to arbitrary local functionals we use the causal
approach of Epstein and Glaser (causal perturbation theory).

Kasia Rejzner pAQFT 16 / 26



The functional approach
Free scalar field

Interaction and renormalization

Renormalization problem

Renormalization problem: extend S(.) to local arguments. This
is reduced to extending the n-fold time-ordered products, since
we can define:

S(V) =

∞∑
n=0

1
n!
T n(V, ...,V) .

The time-ordered product T n(F1, ...,Fn)
.
= F1 ·T ... ·T Fn of n

local functionals is well defined if their supports are pairwise
disjoint.

To extend T n to arbitrary local functionals we use the causal
approach of Epstein and Glaser (causal perturbation theory).

Kasia Rejzner pAQFT 16 / 26



The functional approach
Free scalar field

Interaction and renormalization

Renormalization problem

Renormalization problem: extend S(.) to local arguments. This
is reduced to extending the n-fold time-ordered products, since
we can define:

S(V) =

∞∑
n=0

1
n!
T n(V, ...,V) .

The time-ordered product T n(F1, ...,Fn)
.
= F1 ·T ... ·T Fn of n

local functionals is well defined if their supports are pairwise
disjoint.

To extend T n to arbitrary local functionals we use the causal
approach of Epstein and Glaser (causal perturbation theory).

Kasia Rejzner pAQFT 16 / 26



The functional approach
Free scalar field

Interaction and renormalization

Causal perturbation theory

In causal perturbation theory n-fold time ordered products have to
obey following axioms:

1 Starting element. T 0 = 0, T1 = id.

2 Supports. suppT n(F1, . . . ,Fn) ⊂
⋃

suppFi.
3 Causal factorization property. If the supports of F1 . . .Fi are

later than the supports of Fi+1, . . .Fn, then we have:

T n(F1⊗ · · · ⊗Fn) = T i(F1⊗ · · · ⊗Fi) ?T
n−i(Fi+1⊗ · · · ⊗Fn) .

By the theorem of Epstein and Glaser we know that the extension
exists, but is not unique. The theorem is proved inductively (in n) and
at each step the problem is reduced to an extension of a real valued
distribution.
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The functional approach
Free scalar field

Interaction and renormalization

Expansion into graphs

For simplicity, consider M = M .
= (R4, η), where

η = diag(1,−1,−1,−1).

We split the time-ordered product, T n, into two parts:

differential operator:

δαϕ : F1 ⊗ · · · ⊗ Fn 7→ F(α1)
1 (ϕ) · · ·F(αn)

n (ϕ) , α ∈ Nn ,

distribution: S̃α
.
=
∑

Γ∈Gα

~|E(Γ)|

Sym(Γ)
S̃Γ, where the sum is taken over

Gα, the set of (non-tadpole) graphs with n = dim(α) vertices and
|α|
2 lines such that there are αi lines joining at vertex i and

Sym(Γ) ∈ N is the so called symmetry factor of the graph Γ.

Each S̃Γ
.
=

∏
e∈E(Γ)

∆F(xe,i, i ∈ ∂e) is a well defined distribution

on D′((M2\Diag)|E(Γ)|) (Diag denotes the diagonal).
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n (ϕ) , α ∈ Nn ,

distribution: S̃α
.
=
∑

Γ∈Gα

~|E(Γ)|

Sym(Γ)
S̃Γ, where the sum is taken over

Gα, the set of (non-tadpole) graphs with n = dim(α) vertices and
|α|
2 lines such that there are αi lines joining at vertex i and

Sym(Γ) ∈ N is the so called symmetry factor of the graph Γ.

Each S̃Γ
.
=

∏
e∈E(Γ)

∆F(xe,i, i ∈ ∂e) is a well defined distribution

on D′((M2\Diag)|E(Γ)|) (Diag denotes the diagonal).
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The functional approach
Free scalar field

Interaction and renormalization

Causal perturbation theory

The n-fold time-ordered product can then be written as

F1 ·T · · · ·T Fn =
∑
α∈Nn

〈
S̃α, δα (F1 ⊗ · · · ⊗ Fn)

〉

Functional derivatives of a local functional have the form

F(l)[ϕ](x1, . . . , xl) =

∫
dz
∑

j

fj[ϕ](z)pj(∂x1 , . . . , ∂xl)

l∏
i=1

δ(z−xi)

with polynomials pj and ϕ-dependent test functions fj[ϕ].
Note that functional derivatives δ

δϕ(xe,v)
are associated to vertices

v of the graph (see picture), and we get one derivative for each
edge e adjacent at v, so the variables "x" in the formula above are
also numbered by v ∈ V(Γ) and e ∈ E(Γ).
We can move the partial derivatives ∂xe,v by formal partial
integration to the distribution S̃Γ.
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The functional approach
Free scalar field

Interaction and renormalization

Extensions of distributions

Next we integrate over the delta distributions, which amounts to
the pullback with respect to ρΓ : M|V(Γ)| →M2|E(Γ)|,

(ρΓ(z))e,v = zv if v ∈ ∂e .

Let p be a polynomial in the partial derivatives ∂xe,v , v ∈ ∂e. The
pullback ρ∗Γ of pS̃Γ is well defined on M|V(Γ)|\DIAG, where
DIAG is the large diagonal:

DIAG =
{

z ∈M|V(Γ)|| ∃v,w ∈ V(Γ), v 6= w : zv = zw

}
.

The problem of renormalization now amounts to finding the
extensions of ρ∗ΓpS̃Γ to everywhere defined distributions
SΓ,p ∈ D′(M|V(Γ)|).
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The functional approach
Free scalar field

Interaction and renormalization

Extensions of distributions

The construction is inductive. We assume that graphs with k < n
vertices are renormalized (corresponding extensions of
distributions are constructed), so the problem of renormalizing
graphs with n vertices reduces to extending distributions defined
everywhere outside the origin.

The existence and uniqueness of extensions ṫ can be answered in
terms of Steinmann’s scaling degree of t,

sd(u) := inf{ω ∈ R | lim
ρ↓0

ρω u(ρx) = 0},

u ∈ D′(Rn) or u ∈ D′(Rn \ {0}) .

Kasia Rejzner pAQFT 21 / 26



The functional approach
Free scalar field

Interaction and renormalization

Extensions of distributions

The construction is inductive. We assume that graphs with k < n
vertices are renormalized (corresponding extensions of
distributions are constructed), so the problem of renormalizing
graphs with n vertices reduces to extending distributions defined
everywhere outside the origin.

The existence and uniqueness of extensions ṫ can be answered in
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The functional approach
Free scalar field

Interaction and renormalization

Extensions of distributions

Theorem (Steinmann 71, Brunetti Fredenhagen 2000)
For λ ∈ R let

Dλ(Rn) := {f ∈ D(Rn) | (∂αf )(0) = 0 ∀|α| ≤ λ} (1)

(in particular Dλ(Rn) = D(Rn) if λ < 0) and let D′λ(Rn) be the
corresponding space of distributions. A distribution t ∈ D′(Rn \ {0})
with scaling degree sd(t) has a unique extension t̄ ∈ D′λ(Rn),
λ = sd(t)− n, which satisfies the condition sd(̄t) = sd(t).

An extension to a distribution on the full space D(Mn−1) can be
therefore defined by a choice of the projection:

W : D(Mn−1)→ Dλ(Mn−1) .
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The functional approach
Free scalar field

Interaction and renormalization

Renormalization group

All this works also on general globally hyperbolic manifolds M.

The non-uniqueness in the choice of these projections is
controlled by the (Stückelberg-Petermann) renormalization
group R, which acts on Floc(M).
Elements of R are maps Z : Floc[[~]]→ Floc[[~]] satisfying:

1 Z(0) = 0, Z(1)(0) = id,
2 Z = id + O(~),
3 Z(A + B + C) = Z(A + B)− Z(B) + Z(B + C) if

supp(A) ∩ supp(C) = ∅,
4 They don’t depend explicitly on the field configuration ϕ.
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The functional approach
Free scalar field

Interaction and renormalization

Commutative product

We have already constructed maps
Tn : Floc(M)⊗n → Fµc(M)[[~]],
but we can get even more! There exists a map
β : F(M)→ S•F(0)

loc (M), inverse to the pointwise multiplication.

We define Tr = (⊕nT
n
r ) ◦ β and set:

F ·Tr G .
= Tr(T

−1
r F · T−1

r G) ,

which is an associative, commutative product on Tr(F(M)).

The renormalized QFT is a structure with two products
O 7→ A(O) = (Tr(F(O)), τ, ?, ·Tr ).
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The functional approach
Free scalar field

Interaction and renormalization

Summary

Construction of QFT models on curved spacetimes can be put on
solid mathematical grounds using the functional approach.

The basic structure is a net of non-commutative topological
∗-algebras with the additional commutative product.

Analytic tools involve calculus on locally convex topological
vector space and methods of microlocal analysis.
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The functional approach
Free scalar field

Interaction and renormalization

Thank you for your attention!
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