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BV formalism

Very successful in perturbative
quantum field theory

Implements gauge fixing in a
general framework

Uses powerful methods of
homological algebra [Henneaux, ...]

Not very well understood for infinite
dimensional spaces

Completely neglects topological and
functional-analytic aspects

Needs more fundamental structural
understanding
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Categories

Loc Obj(Loc): all four-dimensional, globally
hyperbolic oriented and time-oriented
spacetimes (M, g).
Morphisms: Isometric embeddings that
fulfill:

• Given (M1, g1), (M2, g2) ∈ Obj(Loc),
for any causal curve γ : [a, b]→ M2, if
γ(a), γ(b) ∈ ψ(M1) then for all
t ∈]a, b[ we have: γ(t) ∈ ψ(M1).

• Preserving orientation and
time-orientation of the embedded
spacetime.

Vec Obj(Vec): (small) topological vector
spaces
Morphisms: morphisms of topological
vector spaces
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Statement of the problem

In our formulation with a physical system we associate:

The configurations space E(M) of all fields of the theory. E
is a contravariant functor from Loc (spacetimes) to Vec
(lcvs). For the scalar field: E(M) = C∞(M).

The space of compactly supported fields Ec(M). Ec is a
covariant functor from Loc to Vec.

D : Loc→ Vec a covariant functor that assigns to M the
space of compactly supported test functions D(M).

The space of smooth, compactly supported functionals on
E(M). This also defines a covariant functor F : Loc→ Vec
(+ regularity conditions: local, microcausal, . . . ).
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Local functionals

Smoothness understood in the sense of calculus on locally
convex vector spaces.

The support of a functional F ∈ C∞(E(M))

supp F = {x ∈ M|∀ neighbourhoods U of x ∃φ, ψ ∈ E(M),

suppψ ⊂ U such that F(φ+ ψ) 6= F(φ)} .

F is local if it is of the form: F(φ) =

∫
M

f (jx(φ)) dµ(x) ,

where f is a function on the jet bundle over M and jx(φ)
is the jet of φ at the point x. Floc is a subfunctor of F.

In this talk we restrict ourselves to multilocal functionals,
which are defined as finite sums of finite products of local
functionals.
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Dynamics

The dynamics is introduced by a generalized Lagrangian L
which is a natural transformation between functors D and
Floc, s.t.: supp(LM(f )) ⊆ supp(f ), and LM(•) is additive in f .
The action S(L) is an equivalence class of Lagrangians. We
say that L1 ∼ L2 if ∀f ∈ D(M), M ∈ Loc:

supp(L1,M − L2,M)(f ) ⊂ supp df .

For example: LM(f ) =

∫
M

(1
2
φ2 +

1
2
∇µφ∇µφ

)
f dvolM.
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Vector fields

Vector fields X on E(M) (trivial infinite dimensional
manifold) can be considered as maps from E(M) to E(M).

We restrict ourselves to smooth maps X with image in
Ec(M). They act on F(M) as derivations:
∂XF(φ) := 〈F(1)(φ),X(φ)〉
We consider only the multilocal (products of local vector
fields and local functionals) vector fields with compact
support.

The space of vector fields with above properties is denoted
by V(M). V becomes a (covariant) functor by setting:
Vχ(X) = Ecχ ◦ X ◦ Eχ .
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Equations of motion and symmetries

The Euler-Lagrange derivative of S is a natural
transformation S′ : E→ D′ defined by:〈
S′M(ϕ), h

〉
=
〈

LM(f )(1)(ϕ), h
〉

with f ≡ 1 on supph. The

field equation is: S′M(ϕ) = 0.

A vector field X ∈ V(M) is called a symmetry of the action S
if it holds ∀ϕ ∈ E(M):

0 =
〈
S′M(ϕ),X(ϕ)

〉
= ∂X(SM)(ϕ) =: δS(X)(ϕ).

M
supp(f )

supp(h)
f ≡ 1

〈
LM(f )(1)(ϕ),X(ϕ)

〉
= 0, for f ≡ 1 on supp(X), ∀φ ∈ E(M)

9 / 23
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field equation is: S′M(ϕ) = 0.

A vector field X ∈ V(M) is called a symmetry of the action S
if it holds ∀ϕ ∈ E(M):

0 =
〈
S′M(ϕ),X(ϕ)

〉
= ∂X(SM)(ϕ) =: δS(X)(ϕ).

M
supp(f )

supp(h)
f ≡ 1

〈
LM(f )(1)(ϕ),X(ϕ)

〉
= 0, for f ≡ 1 on supp(X), ∀φ ∈ E(M)
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Equations of motion and symmetries

The field equation: S′M(ϕ) = 0.
A symmetry of the action: 0 = ∂X(SM)(ϕ) =: δS(X)(ϕ).
(i.e. a direction in E(M) in which the action is constant).

Space of solutions: ES(M) ⊂ E(M). Functionals that vanish
on ES(M): F0(M). Assume that they are of the form: δS(X)
for some X ∈ V(M).

Since δS(X)(φ) = 〈S′M(ϕ) ,X(ϕ)〉 one says that F0(M) "is
generated by EOMs".

Symmetries constitute the kernel of δS.

We obtain a sequence: 0→ Symm. ↪→ V(M)
δS−→ F(M)→ 0.

Functionals on ES(M): FS(M)
.
= F(M)/F0(M) = H0(δS).
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Koszul resolution

In the absence of symmetries the graded algebra
∧

V(M)

with the differential δS provides the resolution of
FS(M) = F(M)/F0(M), called the Koszul resolution.

We have the following complex:

. . .→
2∧
V(M) −→

1
V(M)

δS−→
0

F(M)→ 0

H0(δS) = F(M)/F0(M) = FS(M),

Hk(δS) = 0, k > 0.

11 / 23
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Antifields and antibracket

Vector fields in V(M) correspond to objects called in physics
antifields. The grading of Koszul complex is called antifield
number #af.

The so called antibracket is in our formalism just the
Schouten bracket {., .} on the multivector fields.

Derivation δS is not inner with respect to {., .}, but locally it
can be written as δSX = {X,LM(f )} for f ≡ 1 on suppX,
X ∈ V(M).
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Action and symmetries

The configuration space is E(M) = Γ((T∗M)⊗2), the space
of rank (0, 2) tensors.

The Einstein-Hilbert Lagrangian reads:

L(M,g)(f )(h)
.
=

∫
R[g̃]f d vol(M,g̃), g̃ = g + h, where

h ∈ Ug ⊂ E(M) and Ug is an open neigh. of g, s.t. g̃ is a
Lorentz metric of signture (−+ ++).
The symmetry group is the group Diffc(M) of compactly
supported diffeomorphisms. It can be treated as an infinite
dimensional Lie group modeled on Xc(M), the space of
compactly supported vector fields on M.
The most general nontrivial local symmetries can be written
as elements of G(M) := C∞ml(E(M),Xc(M)) ("ml" stands for
"multilocal"). With the action ρ of G(M) on F ∈ F(M):
ρM(Q)(h) =

〈
F(1)(h),−LQ(h)g̃

〉
We want to find gauge inv. functionals on-shell: Finv

S .
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Ghosts and the Chevalley-Eilenberg complex

With the Lie algebra action of gc(M) on F(M) one associates the
Chevalley-Eilenberg complex. This is the graded algebra of
smooth compactly supported multilocal (products of local) maps
CE(M)

.
= C∞ml(E(M),Λg′(M)).

It has Λkg′(M)⊗ F(M) as a dense
subspace. The differential γ is defined as:

γM : Λqg′(M)⊗ F(M)→ Λq+1g′(M)⊗ F(M) ,

(γMω)(ξ0, . . . , ξq)
.
=

q∑
i=0

(−1)i∂ρM(ξi)(ω(ξ0, . . . , ξ̂i, . . . , ξq)) +

+
∑
i<j

(−1)i+jω
(

[ξi, ξj], . . . , ξ̂i, . . . , ξ̂j, . . . , ξq

)
,

and extended by continuity. In particular for F ∈ F(M) we have:
(γF)(X) = ∂ρ(X)F and γF = 0 if F ∈ Finv(M).

14 / 23
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Ghosts and the Chevalley-Eilenberg complex

The 0-cohomology of γ gives the gauge-invariant
functionals: H0 (CE(M), γ) = Finv(M).

In physics elements of X′ are called the ghost fields. The
grading is called the pure ghost number #pg.

One can think of CE(M) as the functions on the differential
graded manifold E(M)⊕ X(M)[1] (c.f. Costello).

The on-shell version of the Chevalley-Eilenberg complex is:
CES(M) = (C∞ml(ES(M),Λg′(M)), γ).

Now we construct the Koszul-Tate resolution of the algebra
CES(M).

15 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Ghosts and the Chevalley-Eilenberg complex

The 0-cohomology of γ gives the gauge-invariant
functionals: H0 (CE(M), γ) = Finv(M).

In physics elements of X′ are called the ghost fields. The
grading is called the pure ghost number #pg.

One can think of CE(M) as the functions on the differential
graded manifold E(M)⊕ X(M)[1] (c.f. Costello).

The on-shell version of the Chevalley-Eilenberg complex is:
CES(M) = (C∞ml(ES(M),Λg′(M)), γ).

Now we construct the Koszul-Tate resolution of the algebra
CES(M).

15 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Ghosts and the Chevalley-Eilenberg complex

The 0-cohomology of γ gives the gauge-invariant
functionals: H0 (CE(M), γ) = Finv(M).

In physics elements of X′ are called the ghost fields. The
grading is called the pure ghost number #pg.

One can think of CE(M) as the functions on the differential
graded manifold E(M)⊕ X(M)[1] (c.f. Costello).

The on-shell version of the Chevalley-Eilenberg complex is:
CES(M) = (C∞ml(ES(M),Λg′(M)), γ).

Now we construct the Koszul-Tate resolution of the algebra
CES(M).

15 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Ghosts and the Chevalley-Eilenberg complex

The 0-cohomology of γ gives the gauge-invariant
functionals: H0 (CE(M), γ) = Finv(M).

In physics elements of X′ are called the ghost fields. The
grading is called the pure ghost number #pg.

One can think of CE(M) as the functions on the differential
graded manifold E(M)⊕ X(M)[1] (c.f. Costello).

The on-shell version of the Chevalley-Eilenberg complex is:
CES(M) = (C∞ml(ES(M),Λg′(M)), γ).

Now we construct the Koszul-Tate resolution of the algebra
CES(M).

15 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Ghosts and the Chevalley-Eilenberg complex

The 0-cohomology of γ gives the gauge-invariant
functionals: H0 (CE(M), γ) = Finv(M).

In physics elements of X′ are called the ghost fields. The
grading is called the pure ghost number #pg.

One can think of CE(M) as the functions on the differential
graded manifold E(M)⊕ X(M)[1] (c.f. Costello).

The on-shell version of the Chevalley-Eilenberg complex is:
CES(M) = (C∞ml(ES(M),Λg′(M)), γ).

Now we construct the Koszul-Tate resolution of the algebra
CES(M).

15 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Koszul-Tate resolution

Let BV(M) be the subset of S•Der(CE(M)) (graded
symmetric powers) consisting of derivations that can be
written as multilocal compactly supported maps on E(M).
The corresponding grading is denoted by #gh (ghost
number).

Formally S•Der(CE(M)) would be the odd cotangent bundle
of E(M)⊕ X(M)[1] (c.f. Costello).
The graded commutator [., .] on Der(CE(M)) and the
evaluation of a derivation on an element of CE(M) are
special instances of the Schouten bracket {., .} on BV(M).
Like in the scalar case, this structure is called the antibracket
and BV(M) is the Batalin-Vilkovisky complex.
Differential γM itself is not inner with respect to {., .}, but we
can consider a natural transformation θ from D to Der(CE)
such that:
{ω, θM(f )} = γ(ω) if supp(ω) ⊂ f−1(1), ω ∈ CE(M).
We define the BV differential: sF = {F,LM(f ) + θM(f )},
where f ≡ 1 on supp F, F ∈ BV(M).

16 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Koszul-Tate resolution

Let BV(M) be the subset of S•Der(CE(M)) (graded
symmetric powers) consisting of derivations that can be
written as multilocal compactly supported maps on E(M).
The corresponding grading is denoted by #gh (ghost
number).
Formally S•Der(CE(M)) would be the odd cotangent bundle
of E(M)⊕ X(M)[1] (c.f. Costello).

The graded commutator [., .] on Der(CE(M)) and the
evaluation of a derivation on an element of CE(M) are
special instances of the Schouten bracket {., .} on BV(M).
Like in the scalar case, this structure is called the antibracket
and BV(M) is the Batalin-Vilkovisky complex.
Differential γM itself is not inner with respect to {., .}, but we
can consider a natural transformation θ from D to Der(CE)
such that:
{ω, θM(f )} = γ(ω) if supp(ω) ⊂ f−1(1), ω ∈ CE(M).
We define the BV differential: sF = {F,LM(f ) + θM(f )},
where f ≡ 1 on supp F, F ∈ BV(M).

16 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Koszul-Tate resolution

Let BV(M) be the subset of S•Der(CE(M)) (graded
symmetric powers) consisting of derivations that can be
written as multilocal compactly supported maps on E(M).
The corresponding grading is denoted by #gh (ghost
number).
Formally S•Der(CE(M)) would be the odd cotangent bundle
of E(M)⊕ X(M)[1] (c.f. Costello).
The graded commutator [., .] on Der(CE(M)) and the
evaluation of a derivation on an element of CE(M) are
special instances of the Schouten bracket {., .} on BV(M).

Like in the scalar case, this structure is called the antibracket
and BV(M) is the Batalin-Vilkovisky complex.
Differential γM itself is not inner with respect to {., .}, but we
can consider a natural transformation θ from D to Der(CE)
such that:
{ω, θM(f )} = γ(ω) if supp(ω) ⊂ f−1(1), ω ∈ CE(M).
We define the BV differential: sF = {F,LM(f ) + θM(f )},
where f ≡ 1 on supp F, F ∈ BV(M).

16 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Koszul-Tate resolution

Let BV(M) be the subset of S•Der(CE(M)) (graded
symmetric powers) consisting of derivations that can be
written as multilocal compactly supported maps on E(M).
The corresponding grading is denoted by #gh (ghost
number).
Formally S•Der(CE(M)) would be the odd cotangent bundle
of E(M)⊕ X(M)[1] (c.f. Costello).
The graded commutator [., .] on Der(CE(M)) and the
evaluation of a derivation on an element of CE(M) are
special instances of the Schouten bracket {., .} on BV(M).
Like in the scalar case, this structure is called the antibracket
and BV(M) is the Batalin-Vilkovisky complex.

Differential γM itself is not inner with respect to {., .}, but we
can consider a natural transformation θ from D to Der(CE)
such that:
{ω, θM(f )} = γ(ω) if supp(ω) ⊂ f−1(1), ω ∈ CE(M).
We define the BV differential: sF = {F,LM(f ) + θM(f )},
where f ≡ 1 on supp F, F ∈ BV(M).

16 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Koszul-Tate resolution

Let BV(M) be the subset of S•Der(CE(M)) (graded
symmetric powers) consisting of derivations that can be
written as multilocal compactly supported maps on E(M).
The corresponding grading is denoted by #gh (ghost
number).
Formally S•Der(CE(M)) would be the odd cotangent bundle
of E(M)⊕ X(M)[1] (c.f. Costello).
The graded commutator [., .] on Der(CE(M)) and the
evaluation of a derivation on an element of CE(M) are
special instances of the Schouten bracket {., .} on BV(M).
Like in the scalar case, this structure is called the antibracket
and BV(M) is the Batalin-Vilkovisky complex.
Differential γM itself is not inner with respect to {., .}, but we
can consider a natural transformation θ from D to Der(CE)
such that:
{ω, θM(f )} = γ(ω) if supp(ω) ⊂ f−1(1), ω ∈ CE(M).

We define the BV differential: sF = {F,LM(f ) + θM(f )},
where f ≡ 1 on supp F, F ∈ BV(M).

16 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Koszul-Tate resolution

Let BV(M) be the subset of S•Der(CE(M)) (graded
symmetric powers) consisting of derivations that can be
written as multilocal compactly supported maps on E(M).
The corresponding grading is denoted by #gh (ghost
number).
Formally S•Der(CE(M)) would be the odd cotangent bundle
of E(M)⊕ X(M)[1] (c.f. Costello).
The graded commutator [., .] on Der(CE(M)) and the
evaluation of a derivation on an element of CE(M) are
special instances of the Schouten bracket {., .} on BV(M).
Like in the scalar case, this structure is called the antibracket
and BV(M) is the Batalin-Vilkovisky complex.
Differential γM itself is not inner with respect to {., .}, but we
can consider a natural transformation θ from D to Der(CE)
such that:
{ω, θM(f )} = γ(ω) if supp(ω) ⊂ f−1(1), ω ∈ CE(M).
We define the BV differential: sF = {F,LM(f ) + θM(f )},
where f ≡ 1 on supp F, F ∈ BV(M).

16 / 23



BV formalism

Katarzyna
Rejzner

Preliminaries

Gravity

Action and
symme-
tries

BV
complex
on natural
transfor-
mations

Conclusions

Koszul-Tate resolution

The full BV complex reads explicitely:

BV(M) = C∞ml

(
E(M),

∧
Ec(M) ⊗̂

∧
g′(M) ⊗̂ S•gc(M)

)

Antifields: #af = 1, #gh = −1

Ghosts: #af = 0, #gh = 1

Antifields of ghosts: #af = 2, #gh = −2
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BV complex

We expand s wrt antifield number: s = s(−1) + s(0), where:

s( -1) is the K-T differential providing the resolution

of CES(M): . . .→ Λ2V⊕G
δS⊕ρ−−−→ V

δS−→ F→ 0
s(0) is the Chevalley-Eilenberg differential on
CES(M) = C∞ml (ES(M),Λg′(M)).

We obtain a double complex:

s( -1)
−−−−→

(
Λ2V⊕G

) s( -1)
−−−−→ V

s( -1)
−−−−→ F

s( -1)
−−−−→ 0ys(0)

ys(0)

ys(0)

s( -1)
−−−−→ C∞ml

(
E,(Λ2Ec⊕gc)⊗̂g′

) s( -1)
−−−−→ C∞ml

(
E,Ec⊗̂g′

) s( -1)
−−−−→ C∞ml

(
E, g′

) s( -1)
−−−−→ 0

The gauge invariant observables are given by:

H0(BV(M), s) = H0(CES(M), s(0)) = Finv
S (M)
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BV complex on the fixed background

Problem
On the fixed background the cohomology is trivial.

Solution

We define the algebra of fields as: Fld =
∞⊕

k=0

Nat(Ek
c,BV). The

action of symmetries on natural transformations Φ ∈ Nat(Ec,F):

(ρM(X)ΦM)(f ) := ∂ρM(X)(ΦM(f ))+ΦM(ρM(X)f ), X ∈ X(M) .

19 / 23
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Fields as natural transformations

In the framework of locally covariant field theory
(Brunetti-Fredenhagen-Verch) fields are natural
transformation between certain functors.

Physical picture: A field tells us how to compare the
observations localized in different regions of a spacetime M
in the absence of symmetries.

In classical gravity we understand physical quantities not as
pointwise objects but rather as something defined on all the
spacetimes in a coherent way.

For example scalar curvature R is invariant in this sense, but
R(x) (curvature at a given point) not.

20 / 23
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BV complex extended to natural transformations

The set Fld becomes a graded algebra if we equip it with a
graded product defined as:

(ΦΨ)M(f1, ..., fp+q) =

=
1

p!q!

∑
π∈Pp+q

ΦM(fπ(1), ..., fπ(p))ΨM(fπ(p+1), ..., fπ(p+q)) .

The BV-differential on Fld is now given by:
(sΦ)M(f ) := s0(ΦM(f )) + (−1)|Φ|ΦM(ρM(.)f ),

where s0 is the BV differential on the fixed background.
The 0-cohomology of s is nontrivial, since it contains for
example the Riemann tensor contracted with itself, smeared
with a test function:

Φ(M,g)(f )(h) =

∫
M

Rµναβ [g̃]Rµναβ [g̃]fdvol(M,g̃) g̃ = g + h .
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The BV-differential on Fld is now given by:
(sΦ)M(f ) := s0(ΦM(f )) + (−1)|Φ|ΦM(ρM(.)f ),

where s0 is the BV differential on the fixed background.

The 0-cohomology of s is nontrivial, since it contains for
example the Riemann tensor contracted with itself, smeared
with a test function:

Φ(M,g)(f )(h) =

∫
M

Rµναβ [g̃]Rµναβ [g̃]fdvol(M,g̃) g̃ = g + h .
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Conclusions

We gave a geometrical interpretation of the BV formalism.

The construction was formulated in a covariant way and
generalized to the natural transformations.

In general relativity the basic physical objects are fields
(natural transformations), since they are defined not on a
fixed background but rather on a class of spacetimes in a
coherent way.

The BV differential can be defined on the algebra of fields
Fld and gives a homological interpretation to the notion of
gauge invariant physical quantities in general relativity.
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