1 Reminder: Convergence of nets in topological
spaces

Definition 1.1. A directed system is an index set I together with an ordering
< which satisfies:

1. If a,B € I, then there exists v € I sth. v > a and v > 3

2. < is a partial ordering (i.e. a reflexive transitive and antisymmetric rela-
tion on I)

Definition 1.2. A net in a topological space S is a mapping from a directed
system I to S (notation: (Ta)acr)-

Definition 1.3. A net (z4)aer in a topological space S is said to converge to
x € 8 (notation: x, — x) if for any neighborhood N oF x there is a € I s.th.
To €N if a > (.

2 bornological convergence of nets

In a bornological vector space (bvs) E one has a natural notion of convergence
(which depends only on the bornology B). In many applications one uses convex
bornological vector spaces (cbvs).

Definition 2.1. Let (2,) er be a net in a cbvs E. We say that (z~)yer con-
verges bornologically to 0 ((z)yer — 0) if there exists a bounded and absolutely
convex set B C E and a net (Ay) er in K converging to 0 sth. z,, € \,B.

Correspondingly, (z-)yer is said to converge bornologically to € E if
(24)yer — 2« — 0. Recall that absolutely convex is equivalent to disked. Fur-
thermore, we define the vector space Fg wrt. the disk B C E to be the linear
span of B, which is equivalent to

Ep = U \B.
A€eK

This space is then equipped with the seminorm pg(z) = inf{a € Ry |z € aB},
inducing a topology on Ep. If F is a lcvs and B is bounded additionally, the
pp is a norm.

Proposition 2.2 (characterisation of bornological convergence). Let () er
be a net in a cbvs E. Then (x,)yer — 0 if and only if there exists a bounded
absolutely convex set B C E s.th. (z)yer converges to 0 in Ep (by which we
mean topological convergence).

Convention: If E is a topological vector space, then “—” will denote topolog-

. —¢ .
ical convergence while “=“ (called Mackey-convergence) refers to bornological
convergence wrt. the canonical von Neumann bornology.

Remark 2.3. Let E be a lcvs and B C E absolutely convex and bounded. Then
the canonical embedding Ep — E is continous, so bornologically convergent nets
(which converge topologically in Eg) converge also topologically in E. Generally
the converse is false, as seen in the following



Example 2.4. Denote by cq the space of sequences converging to 0 and con-
sider the space E = HCO R, endowed with the product topology (which is the
topology of pointwise convergence). Define x, € E by its components (xr,), =
w(n). Clearly (x,) converges to 0 wrt. this topology because it does so in ev-
ery component. We show that (x,) is not Mackey convergent: Suppose there
is B C E, bounded and a sequence of reals (\,) converging to infinity sth.
{A\zn :m €N} C B & x, € 1/\,B. Project this on the component k, given
by kn = 1/v/An € co. Thus {\/A, : n € N} C pr,.(B) = Contradiction, since
pr.(B) must be bounded in R. Thus (z,) cannot be Mackey convergent since B
and (A,) were arbitrary.

Definition 2.5. A net () er in a cbvs is called Cauchy net if the net

(Ty = Ty ) (v, erxT
converges to 0.

Definition 2.6. Let E be a separated topological vector space. (z~)~er is called
Mackey-Cauchy net if it is Cauchy wrt. the von Neumann bornology of E, i.e.
there exists (fiy,n')(y)erxr in R converging to 0 and B C E, bounded and
absolutely convex s.th. (x4 — x4) € piy B.

Lemma 2.7. 1. Let EF be cbvs f: E — F be a bounded map. Let further
Ty = 2, Yy =y inEand Ay — X inK. Then xy+yy — 2+y, \yz, — AT

and f(z,) — f(x).

2. In a lcvs every Mackey convergent net is topologically convergent and ev-
ery Mackey-Cauchy net is a Cauchy net.

3. In alcs every weakly convergent Mackey-Cauchy net is Mackey convergent.

Finally we can make a statement about the uniqueness of bornologically
convergent nets in separated cbvs (recall that in a separated bornology {0} is
the only bounded vector subspace):

Proposition 2.8. A cbvs is separated iff every convergent net has a unique

limit.

3 Completeness

Similarly to topological notions, one defines a bornological space to be complete
if every bornological Cauchy sequence converges. In particular

Definition 3.1. A lcvs E in which every Mackey-Cauchy sequence converges
bornologically is called Mackey complete.

Proposition 3.2. For a lcvs E the following conditions are equivalent:

1. Every Mackey-Cauchy net converges topologically in E



2. FEvery Mackey-Cauchy sequence converges topologically in F
3. For every absolutely convez closed bounded set B the space Ep is complete

4. For every bounded set B there exists an absolutely convex bounded set
B’ D B s.th. Ep/ is complete.

Proof. 1.= 2. and 3.= 4. are clear.

2.= 3.: Let (x,) be Cauchy in Ep. Since Ep is normed, it suffices to show se-
quential completeness. By prop. 2.2, (z,,) is Mackey-Cauchy in E and converges
to some z € E by assumption. Since pg(z, — ) — 0, given € > 0 we find
N(e) € Ns.th. pp(a, — ) < € whenever n,m > N(e) and thus z,, — x,, € €B.
Now z, —x € eB for all n > N(e) since B is closed. In particular z € Ep and
thus z,, — x in Ep.

4.= 1.: Let (2)~er be Mackey-Cauchy in E. There is some ji » — 0 in R s.th.
(xy — xy/) € pby, B for some B bounded. Let vy be arbitrary and choose B to
be absolutely convex, to contain ., and s.th. Ep is complete by (4.). Fory € T’
we have £, = Ty + Ty — Ty € Ty +hyvoB C Ep and pp(ay—24/) < fy.o — 0.
Thus (z,) is Cauchy in Ep and converges in Ep and therefore in E. O

The following proposition establishes the equivalence of Mackey convergence
and topological convergence in lcvs:

Proposition 3.3. In a lcvs a Mackey-Cauchy net converges bornologically in
E (i.e. E is Mackey complete) iff it converges topologically in E.

Remark 3.4. Since Mackey-Cauchy sequences of a lcvs are special Cauchy
sequences, it follows from the last proposition and the equivalence 1.<2. before
that a sequentially complete lcvs is Mackey complete, so Mackey completeness
is a weaker condition. Example: space of distributions

4 Lipschitz curves and Mackey convergence of
the difference quotient

Definition 4.1. Let E be a lcvs. A curve ¢ : R — FE is called differentiable if
the derivative ¢/ (t) := lims_o(c(t + s) — c(t))/s at t exists for all t. c is called
smooth or C*° if all iterated derivatives exist. It is called C™ for n < oo if its
iterated derivatives up to order n exist and are continous.

Definition 4.2. A curve ¢: R — FE is called locally Lipschitzian if every point
r € R has a neighborhood U sth. the Lipschitz codition is satisfied on U, i.e.
the set {2~ (c(t) — c(s)) : t # s;t,s € U} is bounded.

This implies that for ¢ the Lipschitz condition is satisfied on each bounded
interval since for increasing ¢;

c(tn) — c(to) _ T tiv1 —ti c(tip1) — c(t;)

tn —to t, —to tiv1 —t;

lies in the absolutely convex hull of a finite union of bounded sets. ¢: R — FE is
called Lip* if all derivatives up to order k exist and are locally Lipschitzian.



4.1 Mean value theorem

Motivation: For curves ¢ with values in a finite dimensional space there is a
generalised version of the mean value theorem in one dimension, namely for
an additional function h : R — R with nonvanishing derivative we have that
% lies in the closed convex hull of {¢/(r)/h’(r) : r}

Proposition 4.3. Letc: I :=[a,b] — E be a continous curve which is differen-
tiable except at points in a countable subset D C I. Let h be a continous mono-
tone function h : I — R which is differntiable on I\ D. Let A be a convex closed
subset of E sth. ¢/(t) € W' (t)A for allt ¢ D. Then c(b) — c(a) € (h(b) — h(a))A.

4.2 The difference quotient converges Mackey

Proposition 4.4. Letc: R — E be a Lip'-curve. Then the curve 1 (1(c(t) — c¢(0)) — ¢/(0))
is bounded on subsets of R\ {0}.

Proof. Apply 4.3 with h = Id to ¢ and obtain:
c(t) — ¢(0)

T —¢0) € (1) : 0 <Irl <[t ciosed,convex = ¢ (0)

= () = ()0 < Jr| < [t])
W E{LEED

closed,convex

0<r| < |t|>

closed,convex

Let a > 0. Since {M :0 < |r| <la|]} is bounded and hence contained in
a closed absolutely convex and bounded set B it follows that

1(“”;0((’)0’(0)) e<zcl(r);d(0):0<lr<ltl> CB

closed,convex



